精英家教网 > 高中数学 > 题目详情

椭圆C:的两个焦点为F1,F2,点P在椭圆C上,且,

(Ⅰ)求椭圆C的方程;

(Ⅱ)若直线l过圆x2+y2+4x-2y=0的圆心,交椭圆C于A,B两点,且A、B关于点M对称,求直线l的方程.

解法一:

(Ⅰ)因为点P在椭圆C上,所以,a=3.

在Rt△PF1F2中,故椭圆的半焦距c=,

从而b2=a2c2=4,

  所以椭圆C的方程为=1.

(Ⅱ)设AB的坐标分别为(x1,y1)、(x2,y2).

   已知圆的方程为(x+2)2+(y-1)2=5,所以圆心M的坐标为(-2,1).

   从而可设直线l的方程为

   y=k(x+2)+1,

   代入椭圆C的方程得

  (4+9k2x2+(36k2+18k)x+36k2+36k-27=0.

   因为AB关于点M对称.

   所以

   解得

   所以直线l的方程为

   即8x-9y+25=0.

   (经检验,所求直线方程符合题意)

解法二:

(Ⅰ)同解法一.

(Ⅱ)已知圆的方程为(x+2)2+(y-1)2=5,所以圆心M的坐标为(-2,1).

   设AB的坐标分别为(x1,y1),(x2,y2).由题意x1x2

                                                                                           ①

                                                                                          ②

由①-②得

                            ③

因为AB关于点M对称,

所以x1+ x2=-4, y1+ y2=2,

代入③得

即直线l的斜率为

所以直线l的方程为y-1=(x+2),

即8x-9y+25=0.

(经检验,所求直线方程符合题意.)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的两个焦点为F1(-2
2
,0)
F2(2
2
,0)
,P为椭圆上一点,满足∠F1PF2=60°.
(1)当直线l过F1与椭圆C交于M、N两点,且△MF2N的周长为12时,求C的方程;
(2)求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的两个焦点为F1(-1,0)、F2(1,0),离心率e=
12

(1)求椭圆C的方程;
(2)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N(M、N不是左、右顶点),且以MN为直径的圆经过椭圆的右顶点A.求证:直线l过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•潮州二模)已知椭圆C的两个焦点为F1(-1,0),F2(1,0),点A(1,
2
2
)
在椭圆C上.
(1)求椭圆C的方程;
(2)已知点B(2,0),设点P是椭圆C上任一点,求
PF
1
PB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年北京卷文)(14分)

椭圆C:的两个焦点为F1,F2,点P在椭圆C上,且

    (Ⅰ)求椭圆C的方程;

    (Ⅱ)若直线l过圆x2+y2+4x-2y=0的圆心,交椭圆C于两点,且A、B关于点M对称,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:2013届河北省高二上学期期末考试文科数学 题型:解答题

(本题12分)椭圆C:的两个焦点为F1,F2,点P在椭圆C上,且(1)求椭圆C的方程;

(2)若直线l过圆x2+y2+4x-2y=0的圆心M,交椭圆C于两点,且A、B关于点M对称,求直线l的方程.

 

 

查看答案和解析>>

同步练习册答案