精英家教网 > 高中数学 > 题目详情

已知函数.
(1)当时,求的极值;(2)当时,讨论的单调性;
(3)若对任意的恒有成立,求实数的取值范围.

(1)极小值,无极大值;(2)参考解析;(3)

解析试题分析:(1)当时.函数f(x)是一个对数函数和分式的和的形式.通过求导可以求出函数的有极小值,但没极大值.
(2)当时.通过求导可得导函数的两个零点,在定义域上分别对两个零点的大小讨论分类.从而得到函数的单调区间.
(3)由对任意的恒有成立.首先要求出函数f(x)在[1,3]上且的最大值.从而对于任意使得恒成立即可.再通过分离变量即可得到结论.本题前两小题较为基础但第二小题的分类做到清晰不容易,第三小题难度较大.
试题解析:(1)当时,     1分
,解得.                                2分
上是减函数,在上是增函数.               3分
的极小值为,无极大值.                   4分
(2).  6分
①当时,上是减函数,在上是增函数;   7分
②当时,上是减函数;                      8分
③当时,上是减函数,在上是增函数.    9分
(3)当时,由(2)可知上是减函数,
.              10分
对任意的恒成立,
                        11分
对任意恒成立,
对任意恒成立,                         12分
由于当时,,∴.           14分
考点:1.函数的极值问题.2.含参函数的单调性.3.不等式的恒成立问题.4.函数的最值问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(I)讨论的单调性;
(Ⅱ)若在(1,+)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求处的切线方程;
(Ⅱ)求的单调区间;
(Ⅲ)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上是增函数,上是减函数.
(1)求函数的解析式;
(2)若时,恒成立,求实数m的取值范围;
(3)是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数)
(1)当恒成立,求实数的取值范围;
(2)若函数有对称中心为A(1,0),求证:函数的切线在切点处穿过图象的充要条件是恰为函数在点A处的切线.(直线穿过曲线是指:直线与曲线有交点,且在交点左右附近曲线在直线异侧)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的导函数是处取得极值,且
(Ⅰ)求的极大值和极小值;
(Ⅱ)记在闭区间上的最大值为,若对任意的总有成立,求的取值范围;
(Ⅲ)设是曲线上的任意一点.当时,求直线OM斜率的最小值,据此判断的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)若,求函数的单调区间;
(Ⅱ)求证:
(Ⅲ)若函数的图象在点处的切线的倾斜角为,对于任意的,函数的导函数)在区间上总不是单调函数,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求曲线处的切线方程;
(Ⅱ)设函数,求函数的单调区间;
(Ⅲ)若在上存在一点,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x-ln(x+a)的最小值为0,其中a>0.
(1)求a的值;
(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;

查看答案和解析>>

同步练习册答案