精英家教网 > 高中数学 > 题目详情
若变量x,y满足约束条件
3x-y-1≥0
3x+y-11≤0
y≥2
,则z=2x+y的最大值为
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.
解答: 解:不等式组对应的平面区域如图:
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大,
3x-y-1=0
3x+y-11=0
,解得
x=2
y=5

即A(2,5),
此时zmax=2×2+5=9,
故答案为:9.
点评:本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行如图所示的程序框图,输出的S值为(  )
A、2B、-2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

某工业城市按照“十二五”(2011年至2015年)期间本地区主要污染物排放总量控制要求,进行减排治污.现以降低SO2的年排放量为例,原计划“十二五”期间每年的排放量都比上一年减少0.3万吨,已知该城市2011年SO2的年排放量约为9.3万吨,
(Ⅰ)按原计划,“十二五”期间该城市共排放SO2约多少万吨?
(Ⅱ)该城市为响应“十八大”提出的建设“美丽中国”的号召,决定加大减排力度.在2012年刚好按原计划完成减排任务的条件下,自2013年起,SO2的年排放量每年比上一年减少的百分率为p,为使2020年这一年的SO2年排放量控制在6万吨以内,求p的取值范围.
(参考数据
8
2
3
≈0.9505,
9
2
3
≈0.9559).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-
1
3
x3+
1
2
ax2-3x
,g(x)=xlnx
(Ⅰ)当a=4时,求函数f(x)的单调区间;
(Ⅱ)求函数g(x)在区间[t,t+1](t>0)上的最小值;
(Ⅲ)若存在x1,x2∈[
1
e
,e](x1≠x2),使方程f′(x)=2g(x)成立,求实数a的取值范围(其中e=2.71828…是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

用系统抽样方法从400名学生中抽取容量为20的样本,将400名学生随机地编号为1~400,按编号顺序平均分为20个组.若第1组中用抽签的方法确定抽出的号码为11,则第20组抽取的号码为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,角A,B,C成等差数列,则cosB=
 
;若同时边a,b,c成等比数列,则cos2A=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD,ADEF均为正方形,∠CDE=90°,则异面直线BE与CD所成的角的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①设α是平面,m、n是两条直线,如果m?α,n?α,m、n两直线无公共点,那么n∥α;
②设α是一个平面,m、n是两条直线,如果m∥α,n∥α,则m∥n;
③若两条直线都与第三条直线平行,则这两条直线平行;
④三条直线交于一点,则它们最多可以确定3个平面.
其中正确的命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

空间中一正方形的边长为3.一平面使得A、B、C、D四点到的距离都为1,则这样的平面有(  )
A、2个B、4个C、5个D、6个

查看答案和解析>>

同步练习册答案