精英家教网 > 高中数学 > 题目详情
6.函数f(x)=x2+t,则f'(0)=0.

分析 根据题意,由函数的解析式求导可得f′(x)=2x,将x=0代入即可得答案.

解答 解:根据题意,f(x)=x2+t,
则f′(x)=2x,
则f'(0)=2×0=0;
故答案为:0.

点评 本题考查导数的计算,关键是掌握导数的计算公式,注意t为常数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知△ABC的面积为$3-\sqrt{3},B={60°}$,又最大角与最小角的正切值恰好为方程 ${x^2}-3x+2=\sqrt{3}(x-1)$的根,求△ABC的另外两个角和三条边.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示,某几何体的三视图是三个边长为1的正方形及每个正方形内一段半径为1,圆心角为90°的圆弧,则该几何体的体积是(  )
A.1-$\frac{π}{12}$B.1-$\frac{π}{3}$C.1-$\frac{π}{6}$D.1-$\frac{π}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若变量x,y满足条件$\left\{\begin{array}{l}x-y-1≤0\\ x+y-6≤0\\ x-3≥0\end{array}\right.$,则xy的取值范围是(  )
A.[0,5]B.$[{5,\frac{35}{4}}]$C.$[{0,\frac{35}{4}}]$D.[6,9]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sinx(cosx-sinx)+$\frac{1}{2}$
(Ⅰ)求f(x)的最小正周期;
(II)求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}中,an=n,前n项和为Sn,则$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{100}}$=$\frac{200}{101}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在2,0,1,7这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为(  )
A.$\frac{3}{4}$B.$\frac{5}{8}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.要得到函数$y=\sqrt{2}cosx$的图象,只需将函数$y=\sqrt{2}sin(2x+\frac{π}{4})$的图象上所有的点的横坐标伸长为原来的2倍(纵坐标不变),再向左平行移动$\frac{π}{4}$个单位长度得到.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知复数z=1-2i,则复数$\frac{1}{z}$的实部为$\frac{1}{5}$.

查看答案和解析>>

同步练习册答案