精英家教网 > 高中数学 > 题目详情
如图,O是长方体ABCD-A1B1C1D1底面对角线AC与BD的交点,求证:B1O∥平面A1C1D.
分析:证明B1O∥O1D,利用线面平行的判定定理,即可证得结论.
解答:证明:连A1C1交B1D1于O1,连DO1
∵O1B1∥DO,O1B1=DO,
∴O1B1OD为平行四边形,
∴B1O∥O1D
∵BO1?平面A1C1D,O1D?平面A1C1D,
∴B1O∥平面A1C1D.
点评:本题考查线面平行,考查学生分析解决问题的能力,正确运用线面平行的判定定理是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网例2:如图,在长方体ABCD-A1B1C1D1中,AB=AD=2AA1=4,点O是底面ABCD的中心,点E是A1D1的中点,点P是底面ABCD上的动点,且到直线OE的距离等于1,对于点P的轨迹,下列说法正确的是(  )
A、离心率为
2
2
的椭圆
B、离心率为
1
2
的椭圆
C、一段抛物线
D、半径等于1的圆

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽)如图,长方体ABCD-A1B1C1D1 中,底面A1B1C1D1 是正方形,O是BD的中点,E是棱AA1上任意一点.
(Ⅰ)证明:BD⊥EC1
(Ⅱ)如果AB=2,AE=
2
,OE⊥EC1,求AA1的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知长方体ABCD-A1B1C1D1中,AB=3,AD=AA1=2,点O是线段BC1的中点,点M是OD的中点,点E是线段AB上一点,AE>BE,且A1E⊥OE.
①求AE的长;
②求二面角A1-DE-C的正切值;
③求三棱锥M-A1OE的体积.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市六校高二(上)期中数学试卷(理科)(解析版) 题型:解答题

如图,已知长方体ABCD-A1B1C1D1中,AB=3,AD=AA1=2,点O是线段BC1的中点,点M是OD的中点,点E是线段AB上一点,AE>BE,且A1E⊥OE.
①求AE的长;
②求二面角A1-DE-C的正切值;
③求三棱锥M-A1OE的体积.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市六校高二(上)期中数学试卷(理科)(解析版) 题型:解答题

如图,已知长方体ABCD-A1B1C1D1中,AB=3,AD=AA1=2,点O是线段BC1的中点,点M是OD的中点,点E是线段AB上一点,AE>BE,且A1E⊥OE.
①求AE的长;
②求二面角A1-DE-C的正切值;
③求三棱锥M-A1OE的体积.

查看答案和解析>>

同步练习册答案