精英家教网 > 高中数学 > 题目详情

已知函数数学公式,若关于x的方程[f(x)]2+bf(x)+c=0的5个不同实数解恰能构成等差数列,则b的值等于


  1. A.
    -1
  2. B.
    -2
  3. C.
    数学公式
  4. D.
    -3
C
分析:设方程的解为f1,f2,因为共五个实根以及f(x)的对称性,不妨设f(x)=f1有三个实根,则有一根为1,即f(x)=1,进而求得x1,x2,x3,又根据x4-1=1-x5和5个不同实数解恰能构成等差数列,进而确定x4和x5的值,求得f2,最后根据韦达定理求得b.
解答:[f(x)]2+bf(x)+c=0是一个关于f(x)的二次方程,设它的解为f1,f2
得到方程
f(x)=f1
或f(x)=f2
因为共五个实根以及f(x)的对称性,
不妨设f(x)=f1有三个实根
则有一根为1
f(x)=1
∴x1=1,x2=2,x3=0
则f(x)=f2的解为x4,x5
∴x4-1=1-x5
即x4+x5=2
∵5个不同实数解恰能构成等差数列,
只有x4=-1,x5=3和x4=,x5=时符合题意
∴f2=或2
∵-b=f1+f2
∴b=-3或-
故选C
点评:本题主要考查了函数根的判断和分段函数的应用.需要利用函数的对称性来分析根的分布,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

       A.(不等式选讲)已知函数.若关于x的不等式的解集是R,则m的取值范围是        

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山西省示范性高中联考高三(上)期中数学试卷(理科)(解析版) 题型:选择题

已知函数,若关于x的方程f2(x)-af(x)=0恰有5个不同的实数解,则a的取值范围是( )
A.(0,1)
B.(0,2)
C.(1,2)
D.(0,3)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年甘肃省张掖二中高三(上)11月月考数学试卷(理科)(解析版) 题型:选择题

已知函数,若关于x的方程f2(x)-af(x)=0恰有5个不同的实数解,则a的取值范围是( )
A.(0,1)
B.(0,2)
C.(1,2)
D.(0,3)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省高三第四次月考理科数学试卷(解析版) 题型:填空题

已知函数,若关于x的方程有两个不同的实根,则实数k的取值范围是               .

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省高三第二次质量检测理科数学卷 题型:选择题

已知函数 若关于x的方程有且仅有二个不等实根,则实数a的取值范围是(  )

A.     B.()    C.       D.(-3,-2]

 

查看答案和解析>>

同步练习册答案