ÒÑ֪ƽÃæÄÚÁ½¶¨µãF1(0£¬-
5
)¡¢F2(0£¬
5
)
£¬¶¯µãPÂú×ãÌõ¼þ£º|
PF1
|-|
PF2
|=4
£¬ÉèµãPµÄ¹ì¼£ÊÇÇúÏßE£¬OΪ×ø±êÔ­µã£®
£¨I£©ÇóÇúÏßEµÄ·½³Ì£»
£¨II£©ÈôÖ±Ïßy=k£¨x+1£©ÓëÇúÏßEÏཻÓÚÁ½²»Í¬µãQ¡¢R£¬Çó
OQ
OR
µÄÈ¡Öµ·¶Î§£»
£¨III£©£¨ÎÄ¿Æ×ö£©ÉèA¡¢BÁ½µã·Ö±ðÔÚÖ±Ïßy=¡À2xÉÏ£¬Èô
AP
=¦Ë
PB
(¦Ë¡Ê[
1
2
£¬3])
£¬¼ÇxA¡¢xB·Ö±ðΪA¡¢BÁ½µãµÄºá×ø±ê£¬Çó|xA•xB|µÄ×îСֵ£®
£¨Àí¿Æ×ö£©ÉèA¡¢BÁ½µã·Ö±ðÔÚÖ±Ïßy=¡À2xÉÏ£¬Èô
AP
=¦Ë
PB
(¦Ë¡Ê[
1
2
£¬3])
£¬Çó¡÷AOBÃæ»ýµÄ×î´óÖµ£®
·ÖÎö£º£¨I£©ÓÉÌâÒ⣬¿ÉÖª¶¯µãPµÄ¹ì¼£Êǽ¹µãÔÚyÖáÉϵÄË«ÇúÏßµÄÉÏ°ëÖ§£¬ÆäÖÐc=
5
£¬2a=4£¬ÓÉ´ËÄÜÇó³öÇúÏßEµÄ·½³Ì£®
£¨II£©ÉèQ£¨x1£¬y1£©£¬R£¨x2£¬y2£©£¬£¨y1£¬y2£¾0£©£¬ÓÉ
y2
4
-x2=1
y=k(x+1)
£¬µÃ(1-
4
k2
)y2+
8
k
y-8=0
£¬µ±1-
4
k2
=0
£¬²»·ûºÏÌâÒ⣬¹Ê1-
4
k2
¡Ù0
£®ÓÉ´ËÈëÊÖÄܹ»Çó³öÇó
OQ
OR
µÄÈ¡Öµ·¶Î§£®
£¨III£©£¨ÎÄ¿Æ×ö£©ÓÉÇúÏßEµÄ·½³ÌÊÇ
y2
4
-x2=1(y¡Ý2)
£¬ÖªË«ÇúÏßµÄÁ½Ìõ½¥½üÏß·½³ÌΪy=¡À2x£®ÓÉ
AP
=¦Ë
PB
£¬ÇҦˣ¾0£¬ÖªµãA£¬B¾ùÔÚxÖáÉÏ·½£¬ÉèA£¨xA£¬2xA£©£¬B£¨xB£¬-2xB£©£¬ÓÉ
AP
=¦Ë
PB
£¬µÃPµãµÄ×ø±êΪ£¨
xA+¦Ëxb
1+¦Ë
£¬
2(xA-¦ËxB)
1+¦Ë
£©£¬½«Pµã×ø±ê´úÈë
y2
4
-x2=1
ÖУ¬µÃxAxB=
(1+¦Ë)2
-4¦Ë
=-
1
4
(¦Ë+
1
¦Ë
+2)
£®ÓÉ´ËÄÜÇó³ö|xA•xB|µÄ×îСֵ£®
£¨Àí¿Æ×ö£©£©ÓÉÇúÏßEµÄ·½³ÌÊÇ
y2
4
-x2=1(y¡Ý2)
£¬ÖªË«ÇúÏßµÄÁ½Ìõ½¥½üÏß·½³ÌΪy=¡À2x£®ÓÉ
AP
=¦Ë
PB
£¬ÇҦˣ¾0£¬ÖªµãA£¬B¾ùÔÚxÖáÉÏ·½£¬ÉèA£¨m£¬2m£©£¬B£¨-n£¬2n£©£¬m£¾0£®n£¾0£®ÓÉ
AP
=¦Ë
PB
£¬µÃµãPµÄ×ø±êΪ£¨
m-¦Ën
1+¦Ë
£¬
2(m+¦Ën)
1+¦Ë
£©£®½«PµÄ´Ó±ê´úÈë
y2
4
-x2=1
ÖУ¬µÃmn=
(1+¦Ë)2
4¦Ë
£®Éè¡ÏAOB=2¦È£¬ÓÉS¡÷AOB=
1
2
|OA|•|OB|•sin2¦È
£¬ÓÉ´ËÄÜÇó³ö¡÷ABCÃæ»ýµÄ×î´óÖµ£®
½â´ð£º½â£º£¨I£©ÓÉÌâÒ⣬¿ÉÖª¶¯µãPµÄ¹ì¼£Êǽ¹µãÔÚyÖáÉϵÄË«ÇúÏßµÄÉÏ°ëÖ§£¬
ÆäÖÐc=
5
£¬2a=4£¬
¡àb=1£¬
¡àÇúÏßEµÄ·½³ÌÊÇ
y2
4
-x2=1(y¡Ý2)
£®
£¨II£©ÉèQ£¨x1£¬y1£©£¬R£¨x2£¬y2£©£¬£¨y1£¬y2£¾0£©£¬
ÓÉ
y2
4
-x2=1
y=k(x+1)
£¬µÃ(1-
4
k2
)y2+
8
k
y-8=0
£¬
µ±1-
4
k2
=0
£¬¼´k=¡À2ʱ£¬ÏÔÈ»²»·ûºÏÌâÒ⣬
¡à1-
4
k2
¡Ù0
£®
¡à
¡÷=32-
64
k2
£¾0
y1+y1=
8k
4-k2
£¾0
y1y2=
8k2
4-k2
£¾0
£¬
½âµÃ
2
£¼k£¼2
£®
¡ßx1x2=
y1y2
k2
-
y1+y2
k
+1=1
£¬
¡à
OQ
OR
=x1x2+y1y2

=1+
8k2
4-k2

=1-
8(k2-4)+32
k2-4

=-7+
32
4-k2
£®
¡ß
2
£¼k£¼2
£¬
¡à0£¼4-k2£¼2£¬
¡à
1
4-k2
£¾
1
2
£¬
¡à
OQ
OR
¡Ê(9£¬+¡Þ)
£®
£¨III£©£¨ÎÄ¿Æ×ö£©¡ßÇúÏßEµÄ·½³ÌÊÇ
y2
4
-x2=1(y¡Ý2)
£¬
¡àË«ÇúÏßµÄÁ½Ìõ½¥½üÏß·½³ÌΪy=¡À2x£®
¡ß
AP
=¦Ë
PB
£¬ÇҦˣ¾0£¬
¡àµãP±ØÄÚ·ÖÏ߶ÎAB£¬
¹ÊµãA£¬B¾ùÔÚxÖáÉÏ·½£¬
²»·ÁÉèxA£¾0£¬xB£¼0£¬
¼´A£¨xA£¬2xA£©£¬B£¨xB£¬-2xB£©£¬
ÓÉ
AP
=¦Ë
PB
£¬µÃPµãµÄ×ø±êΪ£¨
xA+¦Ëxb
1+¦Ë
£¬
2(xA-¦ËxB)
1+¦Ë
£©£¬
½«Pµã×ø±ê´úÈë
y2
4
-x2=1
ÖУ¬
»¯¼ò£¬µÃxAxB=
(1+¦Ë)2
-4¦Ë
=-
1
4
(¦Ë+
1
¦Ë
+2)
£®
¡à|xAxB|=
1
4
(¦Ë+
1
¦Ë
+2)
£¬¦Ë¡Ê[
1
3
£¬2]

¡ß¦Ë+
1
¦Ë
¡Ý2
£¬µ±ÇÒ½öµ±¦Ë=1ʱ£¬µÈºÅ³ÉÁ¢£®
¡à|xA•xB|min=1£®
£¨Àí¿Æ×ö£©£©¡ßÇúÏßEµÄ·½³ÌÊÇ
y2
4
-x2=1(y¡Ý2)
£¬
¡àË«ÇúÏßµÄÁ½Ìõ½¥½üÏß·½³ÌΪy=¡À2x£®
¡ß
AP
=¦Ë
PB
£¬ÇҦˣ¾0£¬
¡àµãP±ØÄÚ·ÖÏ߶ÎAB£¬
¹ÊµãA£¬B¾ùÔÚxÖáÉÏ·½£¬
ÉèA£¨m£¬2m£©£¬B£¨-n£¬2n£©£¬m£¾0£®n£¾0£®
ÓÉ
AP
=¦Ë
PB
£¬µÃµãPµÄ×ø±êΪ£¨
m-¦Ën
1+¦Ë
£¬
2(m+¦Ën)
1+¦Ë
£©£®
½«µãPµÄ´Ó±ê´úÈë
y2
4
-x2=1
ÖУ¬
»¯¼ò£¬µÃmn=
(1+¦Ë)2
4¦Ë
£®
Éè¡ÏAOB=2¦È£¬
¡ßtan(
¦Ð
2
-¦È)=2
£¬
¡àtan¦È=
1
2
£¬sin2¦È=
4
5
£¬
¡ß|OA|=
5
m£¬|OB|=
5
n
£¬
¡àS¡÷AOB=
1
2
|OA|•|OB|•sin2¦È

=2mn
=
1
2
(¦Ë+
1
¦Ë
)+1
£®
¡ß¦Ë¡Ê[
1
3
£¬2]
£¬
¡à¦Ë+
1
¦Ë
¡Ê[2£¬
10
3
]
£¬
¡àS¡÷AOB¡Ê [2£¬
8
3
]
£®
¡à¡÷ABCÃæ»ýµÄ×î´óֵΪ
8
3
£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éË«ÇúÏß±ê×¼·½³Ì£¬¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëË«ÇúÏßµÄλÖùØϵ£®¿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²é»¯¹éÓëת»¯Ë¼Ï룮¶ÔÊýѧ˼άµÄÒªÇó±È½Ï¸ß£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£®×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬ÊǸ߿¼µÄÖص㣮½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÒÔÏÂ5¸öÃüÌ⣺
¢ÙÇúÏßx2-£¨y-1£©2=1°´
a
=(1£¬-2)
ƽÒƿɵÃÇúÏߣ¨x+1£©2-£¨y-3£©2=1£»
¢ÚÉèA¡¢BΪÁ½¸ö¶¨µã£¬nΪ³£Êý£¬|
PA
|-|
PB
|=n
£¬Ôò¶¯µãPµÄ¹ì¼£ÎªË«ÇúÏߣ»
¢ÛÈôÍÖÔ²µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬PÊǸÃÍÖÔ²ÉϵÄÈÎÒâÒ»µã£¬ÑÓ³¤F1Pµ½µãM£¬Ê¹|F2P|=|PM|£¬ÔòµãMµÄ¹ì¼£ÊÇÔ²£»
¢ÜA¡¢BÊÇƽÃæÄÚÁ½¶¨µã£¬Æ½ÃæÄÚÒ»¶¯µãPÂú×ãÏòÁ¿
AB
Óë
AP
¼Ð½ÇΪÈñ½Ç¦È£¬ÇÒÂú×ã |
PB
| |
AB
| +
PA
AB
=0
£¬ÔòµãPµÄ¹ì¼£ÊÇÔ²£¨³ýÈ¥ÓëÖ±ÏßABµÄ½»µã£©£»
¢ÝÒÑÖªÕýËÄÃæÌåA-BCD£¬¶¯µãPÔÚ¡÷ABCÄÚ£¬ÇÒµãPµ½Æ½ÃæBCDµÄ¾àÀëÓëµãPµ½µãAµÄ¾àÀëÏàµÈ£¬Ôò¶¯µãPµÄ¹ì¼£ÎªÍÖÔ²µÄÒ»²¿·Ö£®
ÆäÖÐËùÓÐÕæÃüÌâµÄÐòºÅΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪ƽÃæÄÚÒ»µãPÓëÁ½¸ö¶¨µãF1(-
3
 £¬ 0)
ºÍF2(
3
 £¬ 0)
µÄ¾àÀëµÄ²îµÄ¾ø¶ÔֵΪ2£®
£¨¢ñ£©ÇóµãPµÄ¹ì¼£·½³ÌC£»
£¨¢ò£©Éè¹ý£¨0£¬-2£©µÄÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬ÇÒOA¡ÍOB£¨OΪ×ø±êÔ­µã£©£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪ƽÃæÄÚ¶¯µãPµ½Á½¶¨µãF1£¬F2µÄ¾àÀëµÄºÍµÈÓÚ³£Êý2a£¬¹ØÓÚ¶¯µãPµÄ¹ì¼£ÕýÈ·µÄ˵·¨ÊÇ
 
£®
¢ÙµãPµÄ¹ì¼£Ò»¶¨ÊÇÍÖÔ²£»                
¢Ú2a£¾|F1F2|ʱ£¬µãPµÄ¹ì¼£ÊÇÍÖÔ²£»
¢Û2a=|F1F2|ʱ£¬µãPµÄ¹ì¼£ÊÇÏ߶ÎF1F2£»  
¢ÜµãPµÄ¹ì¼£Ò»¶¨´æÔÚ£»
¢ÝµãPµÄ¹ì¼£²»Ò»¶¨´æÔÚ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑ֪ƽÃæÄÚÁ½¶¨µãF1(0£¬-
5
)¡¢F2(0£¬
5
)
£¬¶¯µãPÂú×ãÌõ¼þ£º|
PF1
|-|
PF2
|=4
£¬ÉèµãPµÄ¹ì¼£ÊÇÇúÏßE£¬OΪ×ø±êÔ­µã£®
£¨I£©ÇóÇúÏßEµÄ·½³Ì£»
£¨II£©ÈôÖ±Ïßy=k£¨x+1£©ÓëÇúÏßEÏཻÓÚÁ½²»Í¬µãQ¡¢R£¬Çó
OQ
OR
µÄÈ¡Öµ·¶Î§£»
£¨III£©£¨ÎÄ¿Æ×ö£©ÉèA¡¢BÁ½µã·Ö±ðÔÚÖ±Ïßy=¡À2xÉÏ£¬Èô
AP
=¦Ë
PB
(¦Ë¡Ê[
1
2
£¬3])
£¬¼ÇxA¡¢xB·Ö±ðΪA¡¢BÁ½µãµÄºá×ø±ê£¬Çó|xA•xB|µÄ×îСֵ£®
£¨Àí¿Æ×ö£©ÉèA¡¢BÁ½µã·Ö±ðÔÚÖ±Ïßy=¡À2xÉÏ£¬Èô
AP
=¦Ë
PB
(¦Ë¡Ê[
1
2
£¬3])
£¬Çó¡÷AOBÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸