精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)求f(t)的值域G
(2)若对G内的所有实数x,不等式-x2+2mx-m2+2m≤1恒成立,求实数m的取值范围.

解:(1)∵函数

(2)-x2+2mx-m2+2m≤1恒成立?x2-2mx+m2-2m+1≥0恒成立,
令g(x)=x2-2mx+m2-2m+1


当m≥3时
综上:
分析:(1)利用函数的单调性可求其值域G;
(2),不等式-x2+2mx-m2+2m≤1恒成立可转化为x2-2mx+m2-2m+1≥0恒成立(),令g(x)=x2-2mx+m2-2m+1,其对称轴x=m,分区间在对称轴左侧(包括边界),右侧(包括边界),对称轴穿过,三种情况利用函数的单调性及最值讨论解决.
点评:本题考查函数恒成立问题,解决的关键是明确其对称轴在给定区间的什么位置,借助其单调性解决,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数数学公式
(1)求f(x)的定义域;
(2)判断的奇偶性并予以证明.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省深圳实验学校高三(上)数学周末练习(九)(解析版) 题型:解答题

已知函数
(1)求f(x)的单调递增区间;
(2)若不等式|f(x)-m|<2在上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省肇庆市高一(上)期末数学试卷(解析版) 题型:解答题

已知函数
(1)求f(1),f(-3),f(a+1)的值;
(2)求函数f(x)的零点.

查看答案和解析>>

科目:高中数学 来源:2010年重庆市求精中学高考数学一模试卷(理科)(解析版) 题型:解答题

已知函数
(1)求f(x)的最小正周期
(2)当x∈[0,π]时,若f(x)=1,求x的值.

查看答案和解析>>

科目:高中数学 来源:2011年安徽省高二下学期第一次月考数学文卷 题型:解答题

(12分)

已知函数

(1)求f(x)的定义域;

(2)判断f(x)的奇偶性并证明;

 

 

查看答案和解析>>

同步练习册答案