已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145.
(1)求数列{bn}的通项公式bn;
(2)设数列{an}的通项an=loga(1+)(其中a>0且a≠1)记Sn是数列{an}的前n项和,试比较Sn与logabn+1的大小,并证明你的结论
(1)bn=3n-2(2)当a>1时,Sn>logabn+1?,当 0<a<1时,Sn<logabn+1
设数列{bn}的公差为d,由题意得,∴bn=3n-2
(2)证明:由bn=3n-2知
Sn=loga(1+1)+loga(1+)+…+loga(1+)
=loga[(1+1)(1+)…(1+ )]
而logabn+1=loga,于是,比较Sn与logabn+1?的大小比较(1+1)(1+)…
(1+)与的大小.
取n=1,有(1+1)=
取n=2,有(1+1)(1+
推测:(1+1)(1+)…(1+)> (*)
①当n=1时,已验证(*)式成立.
②假设n=k(k≥1)时(*)式成立,即(1+1)(1+)…(1+)>
则当n=k+1时,
,即当n=k+1时,(*)式成立
由①②知,(*)式对任意正整数n都成立.
于是,当a>1时,Sn>logabn+1?,当 0<a<1时,Sn<logabn+1
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
a | 2 n+1 |
a | 2 n |
查看答案和解析>>
科目:高中数学 来源:2011年江苏省南通市启东中学高三考前辅导材料之小题强化篇1(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2011年江苏省高考数学仿真押题试卷(02)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com