精英家教网 > 高中数学 > 题目详情
设f(x)是定义在[-1,1]上的奇函数,g(x)的图象与f(x)的图象关于直线x=1对称,而当x∈[2,3]时,g(x)=-x2+4x-4.
(Ⅰ)求f(x)的解析式;
(Ⅱ)对任意x1,x2∈[0,1],且x1≠x2,求证:|f(x2)-f(x1)|<2|x2-x1|;
(Ⅲ)对任意x1,x2∈[0,1],且x1≠x2,求证:|f(x2)-f(x1)|≤1.
分析:(I)根据g(x)的图象与f(x)的图象关于直线x=1对称,则f(x+1)=g(1-x)即f(x)=g(2-x),从而可求出-1≤x≤0时函数f(x)的解析式,最后根据奇偶性求出函数在0<x≤1上的解析式;
(II)当x1,x2∈[0,1]且x1≠x2时,0<x1+x2<2,代入解析式进行化简变形,即可证得结论;
(III)当x1,x2∈[0,1]且x1≠x2时,0≤x12≤1,0≤x22≤1∴-1≤x22-x12≤1即|x22-x12|≤1,即可证得结论.
解答:解:(Ⅰ)由题意知f(x+1)=g(1-x)?f(x)=g(2-x)
当-1≤x≤0时,2≤2-x≤3,f(x)=-(2-x)2+4(2-x)-4=-x2
当0<x≤1时,-1≤-x<0∴f(-x)=-x2
由于f(x)是奇函数∴f(x)=x2f(x)=
-x2(-1≤x≤0)
x2(0<x≤1)

(Ⅱ)当x1,x2∈[0,1]且x1≠x2时,0<x1+x2<2,
∴|f(x2)-f(x1)|=|x22-x12|=|(x2-x1)(x2+x1)|<2|x2-x1|
(Ⅲ)当x1,x2∈[0,1]且x1≠x2时,0≤x12≤1,0≤x22≤1,
∴-1≤x22-x12≤1即|x22-x12|≤1.∴|f(x2)-f(x1)|=|x22-x12|≤1.
点评:本题主要考查了函数的奇偶性,以及函数的解析式的求解和不等式的证明,同时考查了化简转化能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且y=f(x)的图象关于直线x=
12
对称,则f(1)+f(2)+f(3)+f(4)+f(5)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

例2.设f(x)是定义在[-3,
2
]上的函数,求下列函数的定义域(1)y=f(
x
-2)
(2)y=f(
x
a
)(a≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图象,则f(2013)+f(2014)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江一模)设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x-2)=f(x+2)且当x∈[-2,0]时,f(x)=(
1
2
x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是
34
,2)
34
,2)

查看答案和解析>>

同步练习册答案