精英家教网 > 高中数学 > 题目详情
17.已知向量$\overrightarrow{a}$=(4,3),$\overrightarrow{b}$=(-1,2).
(1)求|$\overrightarrow{a}-\overrightarrow{b}$|;
(2)若向量$\overrightarrow{a}-λ\overrightarrow{b}$与2$\overrightarrow{a}+\overrightarrow{b}$平行,求λ的值.

分析 (1)利用平面向量坐标运算法则先求出$\overrightarrow{a}-\overrightarrow{b}$,由此能求出|$\overrightarrow{a}-\overrightarrow{b}$|.
(2)利用平面向量坐标运算法则先求出$\overrightarrow{a}-λ\overrightarrow{b}$,2$\overrightarrow{a}+\overrightarrow{b}$,再由向量$\overrightarrow{a}-λ\overrightarrow{b}$与2$\overrightarrow{a}+\overrightarrow{b}$平行,利用向量平行的性质能求出λ.

解答 解:(1)∵向量$\overrightarrow{a}$=(4,3),$\overrightarrow{b}$=(-1,2),
∴$\overrightarrow{a}-\overrightarrow{b}$=(5,1),
∴|$\overrightarrow{a}-\overrightarrow{b}$|=$\sqrt{25+1}=\sqrt{26}$.
(2)$\overrightarrow{a}-λ\overrightarrow{b}$=(4+λ,3-2λ),2$\overrightarrow{a}+\overrightarrow{b}$=(7,8),
∵向量$\overrightarrow{a}-λ\overrightarrow{b}$与2$\overrightarrow{a}+\overrightarrow{b}$平行,
∴$\frac{4+λ}{7}=\frac{3-2λ}{8}$,
解得λ=-$\frac{1}{2}$.

点评 本题考查向量的模的求法,考查实数值的求法,是基础题,解题时要认真审题,注意平面向量坐标运算法则、向量平行的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知f(x)是定义在(0,+∞)上的非负可导函数,且满足xf'(x)+f(x)≤0,对任意的0<a<b,则必有(  )
A.af(b)≤bf(a)B.bf(a)≤af(b)C.af(a)≤f(b)D.bf(b)≤f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知圆C1:(x+a)2+(y-2)2=1与圆C2:(x-b)2+(y-2)2=4相外切,a,b为正实数,则ab的最大值为 (  )
A.2$\sqrt{3}$B.$\frac{9}{4}$C.$\frac{3}{2}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.与圆x2+y2+4x+3=0及圆x2+y2-4x=0都外切的圆的圆心的轨迹是(  )
A.椭圆B.C.半圆D.双曲线的一支

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|2<x<4},B={x|x<3或x>5},则A∪∁RB=(  )
A.{x|2<x≤5}B.{x|x<4或x>5}C.{x|2<x<3}D.{x|x<2或x≥5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点为F1,F2,A,B分别是椭圆的左顶点和上顶点,若线段AB上存在点P,使PF1⊥PF2,则椭圆的离心率的取值范围为$[\frac{\sqrt{5}-1}{2},\frac{\sqrt{2}}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数是(  )
A.y=log2(x+3)B.y=2|x|+1C.y=-x2-1D.y=3-|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若点P(3,1)为圆(x-2)2+y2=16的弦AB的中点,则直线AB的方程为(  )
A.x-3y=0B.2x-y-5=0C.x+y-4=0D.x-2y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,在三棱柱ABC-A1B1C1中,四边形AA1B1B为边长为2的正方形,四边形BB1C1C为菱形,∠BB1C1=60°,平面AA1B1B⊥平面BB1C1C,点E、F分别是B1C,AA1的中点.
(1)求证:EF∥平面ABC;
(2)求二面角B-AC1-C的余弦值.

查看答案和解析>>

同步练习册答案