精英家教网 > 高中数学 > 题目详情
函数f(x)对一切实数x都满足f(x+5)=f(9-x),则f(x)的图象关于
x=7
x=7
对称.
分析:利用函数的对称性确定函数的对称轴.
解答:解:由f(x+5)=f(9-x),得f(x+2+5)=f[9-(x+2)],
即f(x+7)=f(7-x),
所以函数f(x)的图象关于x=7对称.
故答案为:x=7.
点评:本题主要考查函数的对称性,要求熟练掌握函数对称性的特点.若函数f(x)满足f(x+a)=f(x-a),则函数f(x)关于x=a对称.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)对一切实数x,y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0,
(1)求f(0)的值.
(2)对任意的x1∈(0,
1
2
)
x2∈(0,
1
2
)
,都有f(x1)+2<logax2成立时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对一切实数x,y均有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值        
(2)求f(x)的解析式
(3)若函数g(x)=(x+1)f(x)-a[f(x+1)-x]在区间(-1,2)上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x),如果存在函数g(x)=kx+b(k,b为常数),使得f(x)≥g(x)对一切实数x都成立,则称g(x)为f(x)的一个承托函数.现有如下命题:
①对给定的函数f(x),其承托函数可能不存在,也可能无数个;
②g(x)=2x为函数f(x)=2x的一个承托函数;
③若函数g(x)=x-a为函数f(x)=ax2的承托函数,则a的取值范围是a≥
12

④定义域和值域都是R的函数f(x)不存在承托函数;
其中正确命题的序号是
①③
①③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+5)成立,且f(1)=0.
(1)求f(0)的值,并求f(x)的解析式;
(2)若函数g(x)=f(x)-ax在区间[-2,2]上是单调函数,求实数a的取值范围;
(3)已知:当0<x<
12
时,不等式f(x)+3<2x+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对一切实数x,y均有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0,
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)函数g(x)=xf(x+x)在[0,2]上何处取得极值,最值是多少?

查看答案和解析>>

同步练习册答案