精英家教网 > 高中数学 > 题目详情

(12分)

(1)解不等式f(x)>1;

 

【答案】

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在区间(0,+∞)上的函数f(x)满足f(=f(x1)-f(x2),且当x>1时,f(x)<0.

(1)求f(1)的值;

(2)判断f(x)的单调性;

(3)若f(3)=-1,解不等式f(|x|)<-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)对任意的实数m、n有f(m+n)=f(m)+f(n),且当x>0时有f(x)>0.

(1)求证:f(x)在(-∞,+∞)上为增函数;

(2)若f(1)=1,解不等式f[log2(x2-x-2)]<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(0,+∞)上的函数f(x)满足f(=f(x1)-f(x2),且当x>1时,f(x)<0.

(1)求f(1)的值;

(2)判断f(x)的单调性;

(3)若f(3)=-1,解不等式f(|x|)<-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)对任意的实数m、n有f(m+n)=f(m)+f(n),且当x>0时有f(x)>0.

(1)求证:f(x)在(-∞,+∞)上为增函数;

(2)若f(1)=1,解不等式f[log2(x2-x-2)]<2.

查看答案和解析>>

科目:高中数学 来源:2013届甘肃省高二下学期第二次月考文科数学试卷(解析版) 题型:解答题

(12分)设函数f(x)=∣2x+1∣-∣x-4∣

(1)解不等式f(x)>2.

(2)求函数y=f(x)的最小值.

 

查看答案和解析>>

同步练习册答案