ÒÑÖªn´Î¶àÏîʽPn£¨x£©=a0xn+a1xn-1+¡­+an-1x+an£®
Èç¹ûÔÚÒ»ÖÖËã·¨ÖУ¬¼ÆËãx0k£¨k=2£¬3£¬4£¬¡­£¬n£©µÄÖµÐèÒªk-1´Î³Ë·¨£¬¼ÆËãP3£¨x0£©µÄÖµ¹²ÐèÒª9´ÎÔËË㣨6´Î³Ë·¨£¬3´Î¼Ó·¨£©£¬ÄÇô¼ÆËãPn£¨x0£©µÄÖµ¹²ÐèÒª______´ÎÔËË㣮
ÏÂÃæ¸ø³öÒ»ÖÖ¼õÉÙÔËËã´ÎÊýµÄËã·¨£ºP0£¨x0£©=a0£®Pn+1£¨x£©=xPn£¨x£©+ak+1£¨k=0£¬l£¬2£¬¡­£¬n-1£©£®ÀûÓøÃËã·¨£¬¼ÆËãP3£¨x0£©µÄÖµ¹²ÐèÒª6´ÎÔËË㣬¼ÆËãPn£¨x0£©µÄÖµ¹²ÐèÒª______´ÎÔËË㣮
ÔÚÀûÓó£¹æËã·¨¼ÆËã¶àÏîʽPn£¨x£©=a0xn+a1xn-1+¡­+an-1x+anµÄֵʱ£¬
Ëãa0xnÏîÐèÒªn³Ë·¨£¬ÔòÔÚ¼ÆËãʱ¹²ÐèÒª³Ë·¨£ºn+£¨n-1£©+£¨n-2£©+¡­+2+1=
n(n+1)
2
´Î
ÐèÒª¼Ó·¨£ºn´Î£¬Ôò¼ÆËãPn£¨x0£©µÄÖµ¹²ÐèÒª
1
2
n£¨n+3£©´ÎÔËË㣮
ÔÚʹÓÃÇؾÅÉØËã·¨¼ÆËã¶àÏîʽPn£¨x£©=a0xn+a1xn-1+¡­+an-1x+anµÄֵʱ£¬
¹²ÐèÒª³Ë·¨£ºn´Î
ÐèÒª¼Ó·¨£ºn´Î£¬Ôò¼ÆËãPn£¨x0£©µÄÖµ¹²ÐèÒª2nË㣮
¹Ê´ð°¸Îª£º
1
2
n£¨n+3£©£¬2n
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªn´Î¶àÏîʽPn£¨x£©=a0xn+a1xn-1+¡­+an-1x+an£®
Èç¹ûÔÚÒ»ÖÖËã·¨ÖУ¬¼ÆËãx0k£¨k=2£¬3£¬4£¬¡­£¬n£©µÄÖµÐèÒªk-1´Î³Ë·¨£¬¼ÆËãP3£¨x0£©µÄÖµ¹²ÐèÒª9´ÎÔËË㣨6´Î³Ë·¨£¬3´Î¼Ó·¨£©£¬ÄÇô¼ÆËãPn£¨x0£©µÄÖµ¹²ÐèÒª
 
´ÎÔËË㣮
ÏÂÃæ¸ø³öÒ»ÖÖ¼õÉÙÔËËã´ÎÊýµÄËã·¨£ºP0£¨x0£©=a0£®Pn+1£¨x£©=xPn£¨x£©+ak+1£¨k=0£¬l£¬2£¬¡­£¬n-1£©£®ÀûÓøÃËã·¨£¬¼ÆËãP3£¨x0£©µÄÖµ¹²ÐèÒª6´ÎÔËË㣬¼ÆËãPn£¨x0£©µÄÖµ¹²ÐèÒª
 
´ÎÔËË㣮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªn´Î¶àÏîʽPn(x)=a0xn+a1xn-1+¡­+an-1x+an£®Èç¹ûÔÚÒ»ÖÖËã·¨ÖУ¬¼ÆËã
x
k
0
(k=2£¬3£¬4£¬¡­£¬n)
µÄÖµÐèÒªk-1´Î³Ë·¨£¬¼ÆËãP3£¨x0£©µÄÖµÖÁ¶àÐèÒª9´ÎÔËË㣨6´Î³Ë·¨£¬3´Î¼Ó·¨£©£¬ÄÇô¼ÆËãP10£¨x0£©µÄÖµÖÁ¶àÐèÒª
65
65
´ÎÔËË㣮ÏÂÃæ¸ø³öÒ»ÖÖ¼õÉÙÔËËã´ÎÊýµÄËã·¨£ºP0£¨x£©=a0£¬Pk+1£¨x£©=xPk£¨x£©+ak+1£¨k=0£¬1£¬2£¬¡­£¬n-1£©£®ÀûÓøÃËã·¨£¬¼ÆËãP3£¨x0£©µÄÖµÖÁ¶àÐèÒª6´ÎÔËË㣬¼ÆËãP10£¨x0£©µÄÖµÖÁ¶àÐèÒª
20
20
´ÎÔËË㣮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªn´Î¶àÏîʽPn£¨x£©=a0xn+a1xn-1+¡­+an-1x+an£¬Èç¹ûÔÚÒ»ÖÖ¼ÆËãÖУ¬¼ÆËãx0k£¨k=2£¬3£¬4£¬¡­£¬n£©µÄÖµÐèk-1´Î³Ë·¨£®¼ÆËãp3£¨x0£©µÄÖµ¹²Ðè9´ÎÔËË㣨6´Î³Ë·¨£¬3´Î¼Ó·¨£©ÄÇô¼ÆËãPn£¨x0£©µÄÖµ¹²Ðè
1
2
n(n+3)
1
2
n(n+3)
´ÎÔËË㣮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªn´Î¶àÏîʽPn(x)=a0xn+a1xn-1+¡­+an-1x+an.

    Èç¹ûÔÚÒ»ÖÖÔËËãÖÐ,¼ÆËãx0k(k=2,3,4,¡­,n)µÄÖµÐèÒªk-1´Î³Ë·¨,¼ÆËãP3(x0)µÄÖµ¹²ÐèÒª9´ÎÔËËã(6´Î³Ë·¨,3´Î¼Ó·¨),ÄÇô¼ÆËãPn(x0)µÄÖµ¹²Ðè___________´ÎÔËËã.

    ÏÂÃæ¸ø³öÒ»ÖÖ¼õ·¨ÔËËã:P0(x)=a0,Pk+1(x)=xPk(x)+ak+1(k=0,1,2,¡­,n-1).ÀûÓøÃËã·¨,¼ÆËãP3(x0)µÄÖµ¹²Ðè6´ÎÔËËã,¼ÆËãPn(x0)µÄÖµ¹²Ðè__________-´ÎÔËËã.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªn´Î¶àÏîʽPn(x)=a0xn+a1xn-1+¡­+an-1x+an,Èç¹ûÔÚÒ»ÖÖËã·¨ÖУ¬¼ÆËãx0k£¨k=2£¬3£¬4£¬¡­£¬n£©µÄÖµÐèÒªk-1´Î³Ë·¨£¬¼ÆËãP3(x0)µÄÖµ¹²ÐèÒª9´ÎÔËË㣨6´Î³Ë·¨£¬3´Î¼Ó·¨£©£¬ÄÇô¼ÆËãP10(x0)µÄÖµ¹²ÐèÒª___________´ÎÔËË㣮

ÏÂÃæ¸ø³öÒ»ÖÖ¼õÉÙÔËËã´ÎÊýµÄËã·¨£ºP0(x)=a0,Pk+1(x)=xPk(x)+ak+1£¨k=0£¬ 1£¬2£¬¡­£¬n-1£©£®ÀûÓøÃËã·¨£¬¼ÆËãP3(x0)µÄÖµ¹²ÐèÒª6´ÎÔËË㣬¼ÆËãP10(x0)µÄÖµ¹²ÐèÒª______________´ÎÔËËã.

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸