分析 由正弦定理列出关系式,将a,b,sinB的值代入求出sinA的值,确定出A的度数,即可求出C的度数.
解答 解:在△ABC中,a=$\sqrt{3}$,b=$\sqrt{2}$,B=$\frac{π}{4}$,
∴由正弦定理可得:sinA=$\frac{asinB}{b}$=$\frac{\sqrt{3}×\frac{\sqrt{2}}{2}}{\sqrt{2}}$=$\frac{\sqrt{3}}{2}$,
∵a>b,∴A>B,
∴A=$\frac{π}{3}$或$\frac{2π}{3}$,
则C=π-A-B=$\frac{5π}{12}$或$\frac{π}{12}$.
故答案为:$\frac{5π}{12}$或$\frac{π}{12}$.
点评 此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $1-\frac{{\sqrt{3}}}{2},\frac{3}{2}$ | B. | $\frac{1}{2}$,$\frac{5}{4}$ | C. | $1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{3}}}{2}$ | D. | $1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{EF}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{CD}$ | B. | $\overrightarrow{EF}=-\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{CD}$ | C. | $\overrightarrow{EF}=\frac{1}{2}\overrightarrow{AB}-\frac{1}{2}\overrightarrow{CD}$ | D. | $\overrightarrow{EF}=-\frac{1}{2}\overrightarrow{AB}-\frac{1}{2}\overrightarrow{CD}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{π}{3}$,$\frac{4π}{3}$) | B. | (-$\frac{π}{3}$,$\frac{4π}{3}$) | C. | (0,$\frac{π}{3}$) | D. | (-$\frac{π}{3}$,$\frac{π}{3}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com