精英家教网 > 高中数学 > 题目详情
(1)已知点的极坐标分别为(3,
π
4
),(4,
π
2
),求它们的直角坐标;已知点的直角坐标分别为(3,
3
),(0,3),求它们的极坐标
(2)把下面的直角坐标方程化成极坐标方程;极坐标方程转化成直角坐标方程
①2x-3y-1=0
②ρ=2cosθ-4sinθ
分析:(1)根据公式x=ρcosθ、y=ρsinθ,即可算出(3,
π
4
)、(4,
π
2
)两点的直角坐标形式.利用ρ2=x2+y2算出极径ρ,由tanθ=
y
x
可得极角θ的值,因此即可得到(3,
3
)、(0,3)的极坐标形式;
(2)①直接由公式x=ρcosθ、y=ρsinθ代入,即可得到2x-3y-1=0的极坐标方程形式;
②在方程ρ=2cosθ-4sinθ的两边都乘以ρ,再用公式x=ρcosθ,y=ρsinθ,ρ2=x2+y2化简整理,即可得到曲线ρ=2cosθ-4sinθ的直角坐标方程.
解答:解:(1)设点P(3,
π
4
)的直角坐标为(x1,y1),
∵|OP|=3,θ=
π
4

∴x1=3cos
π
4
=
3
2
2
,y1=3sin
π
4
=
3
2
2
,可得点(3,
π
4
)的直角坐标为(
3
2
2
3
2
2
)

同理可得点Q(4,
π
2
)的直角坐标为(0,4),
设M(3,
3
)的极坐标为(ρ1,θ1),可得
ρ12=
33+(
3
)2
=2
3
,tanθ1=
3
3
得θ1=
π
6

∴M(3,
3
)的极坐标为(2
3
π
6
)

同理可得N(0,3)的极坐标为(3,
π
2
)

(2)①∵曲线的直角坐标方程为2x-3y-1=0,
∴将x=ρcosθ,y=ρsinθ代入,得2ρcosθ-3ρsinθ-1=0,即为曲线的极坐标方程;
②∵曲线的极方程为ρ=2cosθ-4sinθ
∴两边都乘以ρ,得ρ2=2ρcosθ-4ρsinθ
∵x=ρcosθ,y=ρsinθ,ρ2=x2+y2
∴x2+y2=2x-4y,化简整理得(x-1)2+(y+2)2=5,即为曲线的直角坐标方程.
点评:本题给出极坐标方程要求化成直角坐标形式,给出直角坐标方程要求化成直角坐标形式.着重考查了直角坐标与极坐标互化公式和直角与圆的方程等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江西模拟)(1)已知点C极坐标为(2,
π
3
)
,则以C为圆心,半径r=2的圆的极坐标方程是
ρ=4cos(θ-
π
3
ρ=4cos(θ-
π
3

查看答案和解析>>

科目:高中数学 来源:2014届黑龙江省高二下学期期末考试理科数学卷(解析版) 题型:解答题

在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立坐标系.已知点的极坐标为,直线的极坐标方程为,且点在直线上.

(1)求的值及直线的直角坐标方程;

(2)圆c的参数方程为,(为参数),试判断直线与圆的位置关系.

 

查看答案和解析>>

科目:高中数学 来源:2014届黑龙江省高二下学期期末考试文科数学卷(解析版) 题型:解答题

在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立坐标系.已知点的极坐标为,直线的极坐标方程为,且点在直线上.

(1)求的值及直线的直角坐标方程;

(2)圆c的参数方程为,(为参数),试判断直线与圆的位置关系.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年海南省海口市洋浦中学高三(上)第一次月考数学试卷(文理合卷)(解析版) 题型:解答题

(1)已知点的极坐标分别为(3,),(4,),求它们的直角坐标;已知点的直角坐标分别为(3,),(0,3),求它们的极坐标
(2)把下面的直角坐标方程化成极坐标方程;极坐标方程转化成直角坐标方程
①2x-3y-1=0
②ρ=2cosθ-4sinθ

查看答案和解析>>

同步练习册答案