精英家教网 > 高中数学 > 题目详情
13.如图,在直三棱柱ABC-A1B1C1中,△ABC是等腰直角三角形,AC=BC=AA1=2,D为侧棱AA1的中点
(1)求证:BC⊥平面ACC1A1
(2)求二面角B1-CD-C1的大小(结果用反三角函数值表示)

分析 (1)推导出AC⊥BC,CC1⊥BC,由此能证明BC⊥平面ACC1A1
(2)以C为原点,直线CA,CB,CC1为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角B1-CD-C1的大小.

解答 证明:(1)∵底面△ABC是等腰直角三角形,且AC=BC
∴AC⊥BC,
∵CC1⊥平面A1B1C1
∴CC1⊥BC,
∵AC∩CC1=C,
∴BC⊥平面ACC1A1
解:(2)以C为原点,直线CA,CB,CC1为x,y,z轴,建立空间直角坐标系,
则C(0,0,0),A(2,0,0),B(0,2,0),C1(0,0,2),B1(0,2,2),D(2,0,1),
由(1)得$\overrightarrow{CB}$=(0,2,0)是平面ACC1A1的一个法向量,
$\overrightarrow{C{B}_{1}}$=(0,2,2),$\overrightarrow{CD}$=(2,0,1),
设平面B1CD的一个法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{C{B}_{1}}=2y+2z=0}\\{\overrightarrow{n}•\overrightarrow{CD}=2x+z=0}\end{array}\right.$,
取x=1,得$\overrightarrow{n}$=(1,2,-2),
设二面角B1-CD-C1的平面角为θ,
则cosθ=$\frac{|\overrightarrow{CB}•\overrightarrow{n}|}{|\overrightarrow{CB}|•|\overrightarrow{n}|}$=$\frac{4}{2×3}$=$\frac{2}{3}$,
由图形知二面角B1-CD-C1的大小是锐角,
∴二面角B1-CD-C1的大小为arccos$\frac{2}{3}$.

点评 本题考查线面垂直的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数f(x)=Acos(ωx+φ)(A,ω,φ为常数,A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f($\frac{π}{6}$)等于(  )
A.$\frac{\sqrt{6}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,且SE=2EB.
(1)证明:DE∥平面SBC;
(2)求二面角A-DE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AD∥BC,侧棱PA⊥底面ABCD,且PA=AB=BC=2,AD=1.
(Ⅰ)试作出平面PAB与平面PCD的交线EP(不需要说明画法和理由);
(Ⅱ)求证:直线EP⊥平面PBC;
(Ⅲ)求二面角C-PB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某几何体的三视图如下,则几何体的表面积为(  )
A.2$\sqrt{5}$+2$\sqrt{2}$B.6+2$\sqrt{3}$+2$\sqrt{2}$C.2+2$\sqrt{5}$+2$\sqrt{2}$D.6+2$\sqrt{5}$+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{log_2}x,(x>0)\\{2^{-x}},(x≤0)\end{array}$,则不等式f(x)>1的解集为(  )
A.(2,+∞)B.(-∞,0)C.(-∞,0)∪(2,+∞)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.△ABC为等腰直角三角形,AC=BC=4,∠ACB=90°,D、E分别是边AC和AB的中点,现将△ADE沿DE折起,使面ADE⊥面DEBC,H、F分别是边AD和BE的中点,平面BCH与AE、AF分别交于I、G两点.
(Ⅰ)求证:IH∥BC;
(Ⅱ)求二面角A-GI-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{|{2}^{x}-b|,x≤1}\\{\frac{3}{x-1},x>1}\end{array}\right.$,若f(f(7))=$\sqrt{2}$,则实数b的值为0或2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.有一排标号为A、B、C、D、E、F的6个座位,请2个家庭共6人入座,要求每个家庭的任何两个人不坐在一起,则不同的入座方法的总数为72.

查看答案和解析>>

同步练习册答案