【题目】在直角坐标系
中,已知椭圆
,若圆![]()
的一条切线与椭圆
有两个交点
,且
.
![]()
(1)求圆
的方程;
(2)已知椭圆
的上顶点为
,点
在圆
上,直线
与椭圆
相交于另一点
,且
,求直线
的方程.
科目:高中数学 来源: 题型:
【题目】阅读:
已知
、
,
,求
的最小值.
解法如下:
,
当且仅当
,即
时取到等号,
则
的最小值为
.
应用上述解法,求解下列问题:
(1)已知
,
,求
的最小值;
(2)已知
,求函数
的最小值;
(3)已知正数
、
、
,
,
求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线C的参数方程为
(t为参数),直线
过点
且倾斜角为
,以坐标原点O为极点,x轴正半轴为极轴,取相同的单位长度建立极坐标系.
(1)写出曲线C的极坐标方程和直线
的参数方程;
(2)若直线l与曲线C交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】依法纳税是每个公民应尽的义务,个人取得的所得应依照《中华人民共和国个人所得税法》向国家缴纳个人所得税(简称个税).2019年1月1日起,个税税额根据应纳税所得额、税率和速算扣除数确定,计算公式为:
个税税额=应纳税所得额×税率-速算扣除数.
应纳税所得额的计算公式为:
应纳税所得额=综合所得收入额-免征额-专项扣除-专项附加扣除-依法确定的其他扣除.
其中免征额为每年60000元,税率与速算扣除数见下表:
级数 | 全年应纳税所得额所在区间 | 税率( | 速算扣除数 |
1 |
| 3 | 0 |
2 |
| 10 | 2520 |
3 |
| 20 | 16920 |
4 |
| 25 | 31920 |
5 |
| 30 | 52920 |
6 |
| 35 | 85920 |
7 |
| 45 | 181920 |
备注:
“专项扣除”包括基本养老保险、基本医疗保险、失业保险等社会保险费和住房公积金。
“专项附加扣除”包括子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等支出。
“其他扣除”是指除上述免征额、专项扣除、专项附加扣除之外,由国务院决定以扣除方式减少纳税的优惠政策规定的费用。
某人全年综合所得收入额为160000元,假定缴纳的基本养老保险、基本医疗保险、失业保险等社会保险费和住房公积金占综合所得收入额的比例分别是
,
,
,
,专项附加扣除是24000元,依法确定其他扣除是0元,那么他全年应缴纳综合所得个税____元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
、
分别是椭圆
的上、下顶点,以
为直径作圆
,直线
与椭圆
交于
、
两点,与圆
交于
、
两点.
(1)若直线
的倾斜角为
,求
(
为坐标原点)的面积;
(2)若点
、
分别在直线
、
上,且
,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一只红玲虫的产卵数
和温度
有关.现收集了7组观测数据如下表:
温度 | 21 | 23 | 25 | 27 | 29 | 32 | 35 |
产卵数 | 7 | 11 | 21 | 24 | 66 | 115 | 325 |
为了预报一只红玲虫在
时的产卵数,根据表中的数据建立了
与
的两个回归模型.模型①:先建立
与
的指数回归方程
,然后通过对数变换
,把指数关系变为
与
;模型②:先建立
与
的二次回归方程
,然后通过变换
,把二次关系变为
与
的线性回归方程:
.
(1)分别利用这两个模型,求一只红玲虫在
时产卵数的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.(参考数据:模型①的残差平方和
,模型①的相关指数
;模型②的残差平方和
,模型②的相关指数
;
,
,
;
,
,
,
,
,
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
![]()
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1存在点D,使得AD⊥A1B,并求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com