精英家教网 > 高中数学 > 题目详情

在△ABC中角A,B,C所对的边分别为a,b,c,且c=b(2cosA+1)
(Ⅰ)若角B=30°,求角A;
(Ⅱ)若b(b+c)=16,求边a.

解:(Ⅰ)在△ABC中,由正弦定理得sinC=sinB(2cosA+1),
即sin(A+30°)=sin30°(2cosA+1)…2分
sinA-cosA=…4分
即sin(A-30°)=…6分
∵-30°<A-30°<150°,
∴A-30°=30°,得A=60°…8分
(Ⅱ)已知得cosA=…9分
由余弦定理a2=b2+c2-2bccosA=b2+c2-2bc=b2+bc=16…11分
得a=4…12分
分析:(Ⅰ)利用正弦定理将c=b(2cosA+1)化为sinC=sinB(2cosA+1),从而可求得sin(A-30°)=,可求得角A;
(Ⅱ)由c=b(2cosA+1)可求得cosA=,再结合余弦定理即可求得边a.
点评:本题考查正弦定理与余弦定理,考查三角函数间的关系,突出运算能力的考查,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中角A,B,C的对边分别为a,b,c,已知 
sinA•cosB
cosA•sinB
=
2c-b
b
,则cosA=
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2sinx(cosx-sinx),其中x∈R
(1)求函数f(x)的最小正周期,并从下列的变换中选择一组合适变换的序号,经过这组变换的排序,可以把函数y=sin2x的图象变成y=f(x)的图象;(要求变换的先后顺序)
①纵坐标不变,横坐标变为原来的
1
2
倍,
②纵坐标不变,横坐标变为原来的2倍,
③横坐标不变,纵坐标变为原来的
2
倍,
④横坐标不变,纵坐标变为原来的
2
2
倍,
⑤向上平移一个单位,⑥向下平移一个单位,
⑦向左平移
π
4
个单位,⑧向右平移
π
4
个单位,
⑨向左平移
π
8
个单位,⑩向右平移
π
8
个单位,
(2)在△ABC中角A,B,C对应边分别为a,b,c,f(A)=0,b=4,S△ABC=6,求a的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中角A、B、C所对的边分别为a、b、c,若
sinA
a
=
cosB
b
,则B的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中角A、B、C所对的边是a、b、c,且a=2bsinA,则角B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳二模)已知向量
m
=(cosωx,sinωx),
n
=(cosωx,2
3
cosωx-sinωx)(x∈R,ω>0)函数f(x)=|
m
|+
m
n
且最小正周期为π,
(1)求函数,f(x)的最大值,并写出相应的x的取值集合;
(2)在△ABC中角A,B,C所对的边分别为a,b,c且f(B)=2,c=3,S△ABC=6
3
,求b的值.

查看答案和解析>>

同步练习册答案