精英家教网 > 高中数学 > 题目详情
设a>0,b>0,且a+b=2,的最小值为m,记满足x2+y2≤3m的所有整点坐标为(xi,yi)(i=1,2,3,…,n),则   
【答案】分析:依题意,可求得m=2,x2+y2≤3m?x2+y2≤6.从而求得整点坐标(xi,yi),计算即可得
解答:解:∵a>0,b>0,且a+b=2,
+=(+)×(a+b)=(1+++1)≥×4=2(当且仅当a=b=1时取“=”).
+的最小值为2,即m=2.
∴x2+y2≤3m?x2+y2≤6.
∴其整点坐标为:(0,0),(0,±1),(0,±2),(±1,0),(±1,±1),(±1,±2),(±2,±1)共19个.
|xiyi|=4×1+4×2+4×2=20.
故答案为:20.
点评:本题考查基本不等式,考查点与圆的位置关系,考查数列的求和,求得m的值与整点坐标(xi,yi)是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a>0,b>0,且a≠b,试比较aabb与abba的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,b>0,且a+b=1,求证:(a+
1
a
)2+(b+
1
b
)2
25
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,b>0,且2a+b=1,则
2
a
+
1
b
的最小值是
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•保定一模)设a>0,b>0,且a+b=2,
1
a
+
1
b
的最小值为m,记满足x2+y2≤3m的所有整点坐标为(xi,yi)(i=1,2,3,…,n),则
n
i=1
|xiyi|
20
20

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,b>0,且a+b≤4,则有(  )
A、
1
ab
1
2
B、
ab
≥2
C、
1
a
+
1
b
≥1
D、
1
a+b
1
4

查看答案和解析>>

同步练习册答案