精英家教网 > 高中数学 > 题目详情
函数f(x)=
x
x+1
,数列{an}满足:an>0,a1=1,an+1=f(an),n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=
2
an
+1
,对任意正整数n,不等式
kn+1
(1+
1
b1
)(1+
1
b2
)(1+
1
b3
)…(1+
1
bn
)
-
kn
2+bn
≤0
恒成立,求正数k的取值范围.
分析:(Ⅰ)由已知,an+1=
an
an+1
,变形
1
an+1
-
1
an
=1,构造等差数列{
1
an
},通过{
1
an
}的通项公式求数列{an}的通项公式
(Ⅱ)由已知得k≤
(1+
1
3
)(1+
1
5
)…(1+
1
2n+1
)
2n+3
,设cn=
(1+
1
3
)(1+
1
5
)…(1+
1
2n+1
)
2n+3
考查cn的最小值,
由于cn无法化简,考虑通过其增减性求最小值.
解答:解:(Ⅰ)∵f(x)=
x
x+1
,∴an+1=
an
an+1
,∴
1
an+1
-
1
an
=1
∴数列{
1
an
}是首项
1
a1
=1,公差d=1的等差数列,
1
an
=1+(n-1)=n
∴an=
1
n

(Ⅱ)由已知得k≤
(1+
1
3
)(1+
1
5
)…(1+
1
2n+1
)
2n+3


设cn=
(1+
1
3
)(1+
1
5
)…(1+
1
2n+1
)
2n+3

cn+1
cn
=
2n+4
2n+3
2n+5
>1,所以数列{cn}递增,
∴cn的最小值为c1=
4
5
15

∴只需0<k≤
4
5
15
点评:本小题主要考查数列的通项公式求解,函数单调性的应用、数列与不等式的综合等基础知识,考查运算求解能力,考查方程思想、化归与转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(Ⅰ)已知函数f(x)=
x
x+1
.数列{an}满足:an>0,a1=1,且
an+1
=f(
an
)
,记数列{bn}的前n项和为Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求数列{bn}的通项公式;并判断b4+b6是否仍为数列{bn}中的项?若是,请证明;否则,说明理由.
(Ⅱ)设{cn}为首项是c1,公差d≠0的等差数列,求证:“数列{cn}中任意不同两项之和仍为数列{cn}中的项”的充要条件是“存在整数m≥-1,使c1=md”.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
x+1
,g(x)与f(x)的图象关于直线y=x对称,则f(1)+g(
1
2
)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
xx-1

(1)判断函数f(x)在区间[2,5]上的单调性.
(2)求函数f(x)在区间[2,5]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳一模)函数f(x)=
x
x
-1
的定义域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数,例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:
①函数f(x)=x2(x∈R)是单函数;
②函数f(x)=
xx-1
是单函数;
③若f(x)为单函数,x1,x2∈A且x1≠x2,,则f(x1)≠f(x2);
④在定义域上具有单调性的函数一定是单函数.
其中的真命题是
②③④
②③④
.(写出所有真命题的编号)

查看答案和解析>>

同步练习册答案