证明面面垂直利用面面垂直的判定定理,先证明线面垂直,在空间几何体的证明中,注意线线,线面,面面之间的相互转化;第二问求体积先需要根据条件求出BC的长度,然后就可以求出体积。
解:(1)当AD=2时,四边形ABCD是正方形,则BD⊥AC,
∵PA⊥平面ABCD,BD?平面ABCD,∴PA⊥BD,
又PA∩AC=A,∴BD⊥平面PAC,
∵BD?平面PBD,∴平面PBD⊥平面PAC.
(2)若PC与AD成45°角,∵AD∥BC,∴∠PCB=45°.
∵BC⊥AB,BC⊥PA,AB∩PA=A,
∴BC⊥平面PAB,PB?平面PAB,
∴BC⊥PB,
∴∠CPB=90°-45°=45°,∴BC=PB=2
,
∴几何体P-ABCD的体积V=
×(2×2
)×2=