【题目】在四棱锥
中,底面ABCD是边长为6的菱形,且
,
平面ABCD,
,F是棱PA上的一个动点,E为PD的中点.
![]()
Ⅰ
求证:
.
Ⅱ
若
.
求PC与平面BDF所成角的正弦值;
侧面PAD内是否存在过点E的一条直线,使得该直线上任一点M与C的连线,都满足
平面BDF,若存在,求出此直线被直线PA、PD所截线段的长度,若不存在,请明理由.
【答案】(Ⅰ)详见解析;(Ⅱ)
.
【解析】
证明
平面PAC即可得出
;
建立空间坐标系,求出平面BDF的法向量
,计算
和
的夹角的余弦值即可;
取PF的中点G,证明平面
,即可得出结论.
证明:
平面ABCD,
平面ABCD,
,
四边形ABCD是菱形,
,
又
,
平面PAC,
平面PAC,
平面PAC,
又
平面PAC,
.
解:
设AC,BD交于点O,以O为坐标原点,以OB,OC,平面ABCD过点O的垂线为坐标轴建立空间直角坐标系,
![]()
则
0,
,
0,
,
,
3,
,
,
,
0,
,
,
设平面BDF的法向量为
y,
,则
,即
,
令
可得
,即
2,
,
,
.
与平面BDF所成角的正弦值为
,
.
取PF的中点G,连接FG,CG,
,G分别是PD,PF的中点,
,又
平面BDF,
平面BDF,
平面BDF,
,O分别是AG,AC的中点,
,又
平面BDF,
平面BDF,
平面BDF,
又
平面CEG,
平面CEG,
,
平面
平面BDF,
侧面PAD内存在过点E的一条直线EG,使得该直线上任一点M与C的连线,
都满足
平而BDF,
此直线被直线PA、PD所截线段为
.
科目:高中数学 来源: 题型:
【题目】(2017高考新课标Ⅲ,理19)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
![]()
(1)证明:平面ACD⊥平面ABC;
(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
:
的左、右焦点分别为
,
,下顶点为
,椭圆
的离心率是
,
的面积是
.
(1)求椭圆
的标准方程.
(2)直线
与椭圆
交于
,
两点(异于
点),若直线
与直线
的斜率之和为1,证明:直线
恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
实数,函数
,函数
.
(Ⅰ)令
,当
时,试讨论函数
在其定义域内的单调性;
(Ⅱ)当
时,令
,是否存在实数
,使得对于函数
定义域中的任意实数
,均存在实数
,有
成立?若存在,求出实数
的取值集合;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某区“创文明城区”
简称“创城”
活动中,教委对本区A,B,C,D四所高中校按各校人数分层抽样调查,将调查情况进行整理后制成如表:
学校 | A | B | C | D |
抽查人数 | 50 | 15 | 10 | 25 |
“创城”活动中参与的人数 | 40 | 10 | 9 | 15 |
注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值![]()
假设每名高中学生是否参与“创城”活动是相互独立的.
Ⅰ
若该区共2000名高中学生,估计A学校参与“创城”活动的人数;
Ⅱ
在随机抽查的100名高中学生中,从A,C两学校抽出的高中学生中各随机抽取1名学生,求恰有1人参与“创城”活动的概率;
Ⅲ
若将表中的参与率视为概率,从A学校高中学生中随机抽取3人,求这3人参与“创城”活动人数的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠DAB=60°,PD⊥底面ABCD,PD=DC=2,E,F,G分别是AB,PB,CD的中点.
![]()
(1)求证:AC⊥PB;
(2)求证:GF∥平面PAD;
(3)求点G到平面PAB的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点
,
的距离之比为定值
的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系
中,
,
,点
满足
.设点
的轨迹为
,下列结论正确的是( )
A.
的方程为![]()
B.在
上存在点
,使得![]()
C.当
,
,
三点不共线时,射线
是
的平分线
D.在三棱锥中
,
面
,且
,
,
,该三棱锥体积最大值为12
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在底面为正方形的四棱锥P—ABCD中,AB=2,PA=4,PB=PD=
,AC与BD相交于点O,E,G分别为PD,CD中点,
(1)求证:EO//平面PBC;
(2)设线段BC上点F满足BC=3BF,求三棱锥E—OFG的体积.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com