精英家教网 > 高中数学 > 题目详情
4.设f(x)=xex,若f'(x0)=0,则x0=(  )
A.-eB.eC.-1D.1

分析 求函数的导数,根据条件建立方程,解方程即可.

解答 解:∵f(x)=xex
∴f′(x)=ex+xex=(1+x)ex
∵f'(x0)=0,
∴f'(x0)=(1+x0)e${\;}^{{x}_{0}}$=0,
则1+x0=0,得x0=-1,
故选:C

点评 本题主要考查函数的导数的计算,根据条件求出函数的导数建立方程是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知各项均不相等的等差数列{an}的前5项和S5=20,且a1,a3,a7成等比数列,则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和为(  )
A.$\frac{n}{2(n+2)}$B.$\frac{n}{2(n+1)}$C.$\frac{2n}{n+2}$D.$\frac{n}{n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在区间[0,3]上随机选取一个数x,使sin$\frac{π}{3}$x的值介于$\frac{1}{2}$到1之间的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{π}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l1:3x+4ay-2=0(a>0),l2:2x+y+2=0.
(1)当a=1时,直线l过l1与l2的交点,且垂直于直线x-2y-1=0,求直线l的方程;
(2)求点M($\frac{5}{3}$,1)到直线l1的距离d的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设两条直线的方程分别为x+y+a=0,x+y+b=0,已知a、b是关于x的方程x2+x-2=0的两个实数根,则这两条直线之间的距离为(  )
A.2$\sqrt{3}$B.$\sqrt{2}$C.2$\sqrt{2}$D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某保险公司用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
赔付金额(元)01000200030004000
车辆数(辆)500130100150120
若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=cos(2x+$\frac{π}{4}$),x∈R.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)的单调递减区间;
(Ⅲ)函数f(x)的图象是由函数y=cos(x+$\frac{π}{4}$)的图象经过怎样变换得到的?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.对于总数为N的一批零件,抽取一个容量为30的样本,若每个零件被抽到的可能性均为25%,则N=(  )
A.120B.150C.200D.240

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.为研究悬挂重量x(单位:克)与某物体长度y(单位:厘米)的关系,进行了6次实验,数据如表所示,求得线性回归方程为:$\widehat{y}$=0.183x+6.285.
x51015202530
y7.258.128.959.9010.911.8
由以上数据计算此回归方程的相关指数:R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{\;}^{\;}({y}_{i}-\overline{y})^{2}}$≈0.999,根据以上计算结果,以下说法正确的是(  )
(1)所选回归直线模型合适;
(2)所选回归直线模型拟合精度不高;
(3)悬挂重量影响该物体长度的99.9%;
(4)悬挂重量影响该物体长度差异的99.9%
A.(1)(3)B.(2)(4)C.(1)(4)D.(2)(3)

查看答案和解析>>

同步练习册答案