精英家教网 > 高中数学 > 题目详情
如图,在空间直角坐标系中,有长方体ABCD—A′B′C′D′,AB=2,BC=3,AA′=4,求点B到直线A′C的距离.

分析:用点到直线的距离公式计算点B到直线A′C的距离d.

解:因为AB=2,BC=3,AA′=4,

所以B(2,0,0),C(2,3,0),A′(0,0,4).

(1)计算直线CA′的方向向量=(0,0,4)-(2,3,0)=(-2,-3,4);

(2)在直线CA′上找到一点C(2,3,0);

(3)=(2,0,0)-(2,3,0)=(0,-3,0);

(4)求上的投影:

CB·=(0,-3,0)·

=(0,-3,0)·()=0×+(-3)×+0×=;

(5)求点B到直线A′C的距离为

d=.

点拨:求点B到直线CA′的距离的方法和步骤是:

(1)计算直线CA′的方向向量;(2)找到直线CA′上一点C;(3)求直线CA′上一点C到点B的向量,即;(4)求上的投影·;(5)求点B到直线A′C的距离d=.在求点的坐标、向量的坐标表示、投影及距离时,运算要正确.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(选修4-4:坐标系与参数方程) (本小题满分10分)

在直角坐标系xoy中,直线的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.

(Ⅰ)求圆C的直角坐标方程;

(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|.

23(本小题满分10分)

 已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB=4AN, M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.

(Ⅰ)证明:CM⊥SN;

(Ⅱ)求SN与平面CMN所成角的大小.

24.(本小题满分10分)

将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为,正面向上的次数为偶数的概率为.

 (Ⅰ)若该硬币均匀,试求

 (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-4:坐标系与参数方程) (本小题满分10分)

在直角坐标系xoy中,直线的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.

(Ⅰ)求圆C的直角坐标方程;

(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|.

23(本小题满分10分)

 已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB=4AN, M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.

(Ⅰ)证明:CM⊥SN;

(Ⅱ)求SN与平面CMN所成角的大小.

24.(本小题满分10分)

将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为,正面向上的次数为偶数的概率为.

 (Ⅰ)若该硬币均匀,试求

 (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较的大小.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年度新课标高二上学期数学单元测试4 题型:解答题

 

 
   (理)如图,建立空间直角坐标系数xOyz,棱长为2的正方体OABC—O′A′B′C′被一平面截得四边形MNPQ,其中N、Q分别是BB′、OO′的中点,

   (Ⅰ)求k的值;

   (Ⅱ)求

 

 

 

 

(文)某村计划建造一个室内面积为800m2的矩形蔬菜温室. 在温室内,种植蔬菜时需要沿左、右两侧与前侧内墙各保留1m宽的空地作为通道,后侧内墙不留空地(如图所示),问当温室的长是多少米时,能使蔬菜的种植面积最大?

 
 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案