£¨2012•ÃàÑôÈýÄ££©ÒÑÖªº¯Êýf£¨x£©=Asin£¨wx+¦Õ£©£¨A£¾0£¬w£¾0£¬|¦Õ|£¼
¦Ð
2
£¬x¡ÊR£©ÔÚÒ»¸öÖÜÆÚÄÚµÄͼÏóÈçͼËùʾ£®Ôòy=f£¨x£©µÄͼÏó¿ÉÓɺ¯Êýy=cosxµÄͼÏó£¨×Ý×ø±ê²»±ä£©£¨¡¡¡¡£©
·ÖÎö£ºÓɺ¯Êýf£¨x£©=Asin£¨wx+¦Õ£©£¨A£¾0£¬w£¾0£¬|¦Õ|£¼
¦Ð
2
£¬x¡ÊR£©ÔÚÒ»¸öÖÜÆÚÄÚµÄͼÏó¿ÉµÃ A=1£¬Çó³ö w=2£¬¦Õ=
¦Ð
3
£¬¿ÉµÃº¯Êýf£¨x£©=sin£¨2x+
¦Ð
3
£©£®ÔÙÓɺ¯Êýy=Asin£¨¦Øx+∅£©µÄͼÏó±ä»»¹æÂÉ£¬µÃ³ö½áÂÛ£®
½â´ð£º½â£ºÓɺ¯Êýf£¨x£©=Asin£¨wx+¦Õ£©£¨A£¾0£¬w£¾0£¬|¦Õ|£¼
¦Ð
2
£¬x¡ÊR£©ÔÚÒ»¸öÖÜÆÚÄÚµÄͼÏó¿ÉµÃ A=1£¬
1
4
T
=
1
4
2¦Ð
w
=
¦Ð
12
+
¦Ð
6
£¬½âµÃ w=2£®
Ôٰѵ㣨
¦Ð
12
£¬1£©´úÈ뺯ÊýµÄ½âÎöʽ¿ÉµÃ 1=sin£¨2¡Á
¦Ð
12
+¦Õ£©£¬¼´ sin£¨
¦Ð
6
+¦Õ£©=1£®
ÔÙÓÉ|¦Õ|£¼
¦Ð
2
£¬¿ÉµÃ ¦Õ=
¦Ð
3
£¬¹Êº¯Êýf£¨x£©=sin£¨2x+
¦Ð
3
£©£®
°Ñº¯Êýy=cosxµÄͼÏóÏȰѸ÷µãµÄºá×ø±êËõ¶Ìµ½Ô­À´µÄ
1
2
±¶£¬¿ÉµÃy=cos2xµÄͼÏó£¬ÔÙÏòÓÒƽÒÆ
¦Ð
12
¸öµ¥Î»¿ÉµÃ
y=cos2£¨x-
¦Ð
12
£©=cos£¨2x-
¦Ð
6
£©=sin[
¦Ð
2
-£¨2x-
¦Ð
6
£©]=sin£¨
2¦Ð
3
-2x£©=sin[¦Ð-£¨
2¦Ð
3
-2x£©]=sin£¨2x+
¦Ð
3
£©=f£¨x£©µÄͼÏó£®
¹ÊÑ¡B£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÓÉy=Asin£¨¦Øx+∅£©µÄ²¿·ÖͼÏóÇó½âÎöʽ£¬º¯Êýy=Asin£¨¦Øx+∅£©µÄͼÏó±ä»»¹æÂÉ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÃàÑôÈýÄ££©Å×ÎïÏßy=-x2µÄ½¹µã×ø±êΪ
£¨0£¬-
1
4
£©
£¨0£¬-
1
4
£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÃàÑôÈýÄ££©ÒÑÖªÕýÏîµÈ²îÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÇÒS15=45£¬MΪa5£¬a11µÄµÈ±ÈÖÐÏÔòMµÄ×î´óֵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÃàÑôÈýÄ££©ÒÑÖªº¯Êýf£¨x£©=
ax
+blnx+c£¨a£¾0£©µÄͼÏóÔڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³ÌΪx-y-2=0£®
£¨I£©ÓÃa±íʾb£¬c£»
£¨II£©Èôº¯Êýg£¨x£©=x-f£¨x£©ÔÚx¡Ê£¨0£¬1]ÉϵÄ×î´óֵΪ2£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÃàÑôÈýÄ££©Ä³µçÊǪ́ÓÐA¡¢BÁ½ÖÖÖÇÁ¦´³¹ØÓÎÏ·£¬¼×¡¢ÒÒ¡¢±û¡¢¶¡ËÄÈ˲μӣ¬ÆäÖм×ÒÒÁ½È˸÷×Ô¶ÀÁ¢½øÐÐÓÎÏ·A£¬±û¶¡Á½È˸÷×Ô¶ÀÁ¢½øÐÐÓÎÏ·B£®ÒÑÖª¼×¡¢ÒÒÁ½È˸÷×Ô´³¹Ø³É¹¦µÄ¸ÅÂʾùΪ
1
2
£¬±û¡¢¶¡Á½È˸÷×Ô´³¹Ø³É¹¦µÄ¸ÅÂʾùΪ
2
3
£®
£¨I £©ÇóÓÎÏ·A±»´³¹Ø³É¹¦µÄÈËÊý¶àÓÚÓÎÏ·B±»´³¹Ø³É¹¦µÄÈËÊýµÄ¸ÅÂÊ£»
£¨II£© ¼ÇÓÎÏ·A¡¢B±»´³¹Ø³É¹¦µÄ×ÜÈËÊýΪ¦Î£¬Çó¦ÎµÄ·Ö²¼ÁкÍÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸