精英家教网 > 高中数学 > 题目详情
19.已知C1:x2+y2+2kx+k2-1=0,圆C2:x2+y2+2(k+1)y+k2+2k=0.
(1)当k=1时,判断两圆的位置关系;
(2)设两圆的交点为A,B,若∠AC1B=60°,求两圆公共弦所在的直线方程.

分析 (1)求出两个圆的圆心坐标与半径,利用圆心距与比较和与 差的关系判断即可.
(2)求出公共弦所在的直线系方程,求出圆的圆心与半径,利用体积转化为圆心与直线的距离,列出方程求解即可.

解答 解:(1)当k=1时,C1:x2+y2+2x=0,圆的圆心(-1,0),半径为:1;
圆C2:x2+y2+4y+3=0.圆心(0,-2),半径为:1.
两个圆的圆心距为:$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$>2.
两圆的位置关系是相离.
(2)两圆公共弦所在的直线方程:2kx-2(k+1)y-2k-1=0.
C1:x2+y2+2kx+k2-1=0,圆心(-k,0),半径为1.
两圆的交点为A,B,若∠AC1B=60°,可得圆C1的圆心到直线的距离为:$\frac{\sqrt{3}}{2}$.
即:$\frac{|-2{k}^{2}-2k-1|}{\sqrt{4{k}^{2}+4(k+1)^{2}}}=\frac{\sqrt{3}}{2}$,化简可得k2+k-1=0,解得k=$\frac{-1±\sqrt{5}}{2}$.
两圆公共弦所在的直线方程为:(-1+$\sqrt{5}$)x-$\sqrt{5}$y-2+$\sqrt{5}$=0或(-1-$\sqrt{5}$)x+$\sqrt{5}$y-2-$\sqrt{5}$=0

点评 本题考查圆与圆的位置关系的应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若扇形的圆心角为a(a为弧度制),半径为r,弧长为l=rα,周长为C,面积为S=$\frac{1}{2}$r2α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(n)=sin$\frac{nπ}{4}$(n∈Z),则f(1)+f(2)+…+f(100)=$1+\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{m}$=1的一个焦点坐标为(0,1),则实数m的值为(  )
A.1B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\left\{\begin{array}{l}{(2-a)x-12,x≤7}\\{(a+2)^{x-6},x>7}\end{array}\right.$是R上的增函数.
(I)求实数a的取值范围;
(Ⅱ)若g(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax(x∈[1,4])的最小值为-$\frac{16}{3}$.试比较f{(g(x))与f($\frac{10}{3}$)的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若{$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$}为空间的一组基底,向量$\overrightarrow{OM}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$+m$\overrightarrow{OC}$,$\overrightarrow{AM}$=$λ\overrightarrow{AB}$+$μ\overrightarrow{AC}$,则m+λ+μ的值是(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若直线x+2y+c=0,过点(2,-5),则该直线不经过第一象限.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设曲线y=x2与x2+(y-a)2=1在同一交点处的切线相互垂直,则a=$\frac{1-\sqrt{17}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在锐角△ABC中,a,b,c分别为∠A,∠B,∠所对的边,若向量$\overrightarrow{m}$=(3,-sinA),$\overrightarrow{n}$=(a,5c),且$\overrightarrow{m}$•$\overrightarrow{n}$=0.
(1)求$\frac{sin2C}{sin2C+co{s}^{2}C}$的值;
(2)若c=4,且a+b=5,求△ABC的面积.

查看答案和解析>>

同步练习册答案