精英家教网 > 高中数学 > 题目详情

已知点P是椭圆与圆的一个交点,且2其中F1、F2分别为椭圆C1的左右焦点,则椭圆C1的离心率为________.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆x2+y2=1与x轴正半轴的交点为F,AB为该圆的一条弦,直线AB的方程为x=m.记以AB为直径的圆为⊙C,记以点F为右焦点、短半轴长为b(b>0,b为常数)的椭圆为D.
(1)求⊙C和椭圆D的标准方程;
(2)当b=1时,求证:椭圆D上任意一点都不在⊙C的内部;
(3)已知点M是椭圆D的长轴上异于顶点的任意一点,过点M且与x轴不垂直的直线交椭圆D于P、Q两点(点P在x轴上方),点P关于x轴的对称点为N,设直线QN交x轴于点L,试判断
OM
OL
是否为定值?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•济南一模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长为4.
(1)若以原点为圆心、椭圆短半轴为半径的圆与直线y=x+2相切,求椭圆焦点坐标;
(2)若点P是椭圆C上的任意一点,过原点的直线L与椭圆相交于M,N两点,记直线PM,PN的斜率分别为kPM,kPN,当kPMkPN=-
1
4
时,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F是椭圆C1
x2
a2
+
y2
b2
=1的右焦点,点P是椭圆C1上的动点,点Q是圆C2:x2+y2=a2上的动点.
(1)试判断以PF为直径的圆与圆C2的位置关系;
(2)在x轴上能否找到一定点M,使得
QF
QM
=e (e为椭圆的离心率)?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:0113 期中题 题型:填空题

已知点P是椭圆C1与圆C2:x2+y2=a2-b2的一个交点,且2∠PF1F2=∠PF2F1,其中F1、F2分别为椭圆C1的左右焦点,则椭圆C1的离心率为(    )。

查看答案和解析>>

同步练习册答案