精英家教网 > 高中数学 > 题目详情
(2012•东城区一模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(0,1),且离心率为
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)A,B为椭圆C的左右顶点,直线l:x=2
2
与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,|DE|•|DF|恒为定值.
分析:(Ⅰ)由题意可知:b=1,因为e=
c
a
=
3
2
,且a2=b2+c2,可得a的值,进而求出椭圆的方程.
(Ⅱ)由题意可得:A(-2,0),B(2,0).设P(x0,y0),由题意可得:-2<x0<2,分别写出直线AP与直线BP的方程,再求出E、F两点的纵坐标,即可求出|DE|•|DF|的表达式,然后利用点P在椭圆上即可得到|DE|•|DF|为定值1.
解答:解:(Ⅰ)由题意可知,b=1,
又因为e=
c
a
=
3
2
,且a2=b2+c2
解得a=2,
所以椭圆的方程为
x2
4
+y2=1

(Ⅱ)由题意可得:A(-2,0),B(2,0).设P(x0,y0),由题意可得:-2<x0<2,
所以直线AP的方程为y=
y0
x0+2
(x+2)
,令x=2
2
,则y=
(2
2
+2)y0
x0+2

|DE|=(2
2
+2)
|y0|
|x0+2|

同理:直线BP的方程为y=
y0
x0-2
(x-2)
,令x=2
2
,则y=
(2
2
-2)y0
x0-2

|DF|=(2
2
-2)
|y0|
|x0-2|

所以|DE|•|DF|=(2
2
+2)
|y0|
|x0+2|
•(2
2
-2)
|y0|
|x0-2|
=
4
y
2
0
|
x
2
0
-4|
=
4
y
2
0
4-
x
2
0

x
2
0
4
+
y
2
0
=1
,即4y02=4-x02,代入上式,
所以|DE|•|DF|=1,
所以|DE|•|DF|为定值1.
点评:本题考查了由椭圆的性质求椭圆的方程,以及直线的方程与直线与直线的交点问题,要求有较高的计算能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•东城区一模)已知sin(45°-α)=
2
10
,且0°<α<90°,则cosα=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区一模)已知x,y,z∈R,若-1,x,y,z,-3成等比数列,则xyz的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区一模)已知函数f(x)=(x-a)(x-b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=ax+b的图象大致为.(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区一模)在如图所示的茎叶图中,乙组数据的中位数是
84
84
;若从甲、乙两组数据中分别去掉一个最大数和一个最小数后,两组数据的平均数中较大的一组是
组.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区一模)如图1,在边长为3的正三角形ABC中,E,F,P分别为AB,AC,BC上的点,且满足AE=FC=CP=1.将△AEF沿EF折起到△A1EF的位置,使平面A1EF⊥平面EFB,连接A1B,A1P.(如图2)
(Ⅰ)若Q为A1B中点,求证:PQ∥平面A1EF;
(Ⅱ)求证:A1E⊥EP.

查看答案和解析>>

同步练习册答案