精英家教网 > 高中数学 > 题目详情
(2012•台州模拟)在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.则原点O(0,0)与直线2x+y-
5
=0
上一点P(x,y)的“折线距离”的最小值是
5
2
5
2
分析:根据新定义直接求出d(A,O);求出过O与直线 2x+y-
5
=0
的点坐标的“折线距离”的表达式,然后求出最小值.
解答:解:如图,直线与两轴的交点分别为 N(0,
5
),M(
5
2
,0)

设P(x,y)为直线上任意一点,作PQ⊥x轴于Q,于是有|PQ|=2|QM|,
所以d=|OQ|+|QP|≥|OQ|+|QM|≥|OM|,即当P与M重合时,dmin=|OM|=
5
2

故答案为:
5
2
点评:本题是中档题,考查新定义,利用新定义求出函数的最小值问题,考查计算能力,对新定义的理解和灵活运应是解好本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•台州模拟)已知函数f(x)=lnx-
1
2
ax2-2x(a<0)
(Ⅰ)若函数f(x)存在单调递减区间,求a的取值范围;
(Ⅱ)若a=-
1
2
且关于x的方程f(x)=-
1
2
x+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•台州模拟)已知函数f(x)=log2(ax2+2x-3a).
(Ⅰ)当a=-1时,求该函数的定义域和值域;
(Ⅱ)如果f(x)≥1在区间[2,3]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•台州模拟)在边长为6的等边△ABC中,点M满足
BM
=2
MA
,则
CM
CB
等于
24
24

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•台州模拟)设|
a
|=|
b
|=|
a
+
b
|≠0
,那么
a
-
b
b
的夹角为(  )

查看答案和解析>>

同步练习册答案