精英家教网 > 高中数学 > 题目详情

设数列{an}是公差为d的等差数列,其前n项和为Sn.已知a1=1,d=2,
①求当n∈N*时,数学公式的最小值;
②证明:由①知Sn=n2,当n∈N*时,数学公式+数学公式…+数学公式数学公式

解:①∵a1=1,d=2,∴Sn==n2
===16
当且仅当n=即n=8时,上式取等号,
的最小值是16;
②证明:由①知Sn=n2,当n∈N*时,
==
+…+
=[-+++…+]
=

+…+=
故命题得证.
分析:①通过等差数列的知识可求和,由基本不等式可得最值;②把①求到的和代入,由裂项相消法可求和,由不等式的放缩法可得结论.
点评:本题为数列和基本不等式的结合,涉及裂项相消法求和,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}是公差不为0的等差数列,Sn为前n项和,满足a3,2a5,a12成等差数列,S10=60.
(1)求数列{an}的通项公式及前n项和Sn
(2)试求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是公差不为0的等差数列,a1=1且a1,a3,a6成等比数列,则{an}的前n项和Sn等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)设数列{an}是公差不为0的等差数列,a1=1且a1,a3,a6成等比数列,则数列{an}的前n项和Sn=
1
8
n2+
7
8
n
1
8
n2+
7
8
n

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南京二模)设数列{an}是公差不为0的等差数列,Sn为其前n项和,若
a
2
1
+
a
2
2
=
a
2
3
+
a
2
4
,S5=5,则a7的值为
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是公差不为0的等差数列,Sn为前n项和,满足a3,2a5,a12 成等差数列,S10=60.
(1)求数列{an}的通项公式及前n项和Sn
(2)试求所有正整数m,使
am+12+2am
为数列{an}中的项.

查看答案和解析>>

同步练习册答案