精英家教网 > 高中数学 > 题目详情

如图,正△ABC的边长为15,数学公式数学公式
(1)求证:四边形APQB为梯形;
(2)求梯形APQB的面积.

解:(1)因
==

且||=13,||=15,
||≠||,
于是四边形APQB为梯形.
(2)设直线PQ交AC于点M,

故梯形APQB的高h为正△ABC的AB边上高的

从而,梯形APQB的面积为
分析:(1)由已知中正△ABC的边长为15,.根据向量加法的三角形法则,我们可得=,根据数乘向量的几何意义,我们可得,但||≠||,进而根据梯形的判定定理得到四边形APQB为梯形;
(2)根据已知条件,结合(1)中的结论,我们可得||=13,||=15,梯形APQB的高h为正△ABC的AB边上高的,代入梯形面积公式,即可求出梯形APQB的面积.
点评:本题考查的知识点是平面向量加法的三角形法则,数乘向量的几何意义,梯形面积公式,其中(1)的关键是根据向量加法的三角形法则,求出=,进而根据数乘向量的几何意义,分析PQ边与AB的关系,(2)的关键是根据已知求出梯形的上、下底边长及高的长度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(选做题)(几何证明选讲)如图,正△ABC的边长为2,点M,N分别是边AB,AC的中点,直线MN与△ABC的外接圆的交点为P、Q,则线段PM=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•株洲模拟)如图,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.

(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求二面角E-DF-C的余弦值;
(3)在线段BC上是否存在一点P,使AP⊥DE?如果存在,求出
BPBC
的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正△ABC的边长为15,
AP
=
1
3
AB
+
2
5
AC
BQ
=
1
5
AB
+
2
5
AC

(1)求证:四边形APQB为梯形;
(2)求梯形APQB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正△ABC的边长为2a,CD是AB边上的高,E、F分别是AD和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.
(1)试判断翻折后直线AB与平面DEF的位置关系,并说明理由; 
(2)求异面直线AB与DE所成角的大小.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年河北衡水中学高三上学期第五次调研考试文科数学试卷(解析版) 题型:解答题

如图,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.

(1)试判断直线AB与平面DEF的位置关系,并说明理由;

(2)求棱锥E-DFC的体积;

(3)在线段BC上是否存在一点P,使AP⊥DE?如果存在,求出的值;如果不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案