精英家教网 > 高中数学 > 题目详情
8.已知tanθ=4,则$\frac{sinθ+cosθ}{17sinθ}+\frac{{si{n^2}θ}}{4}$的值为(  )
A.$\frac{14}{68}$B.$\frac{21}{68}$C.$\frac{68}{14}$D.$\frac{68}{21}$

分析 利用同角三角函数间的基本关系化简,把tanθ的值代入计算即可求出值.

解答 解:$\frac{sinθ+cosθ}{17sinθ}+\frac{{si{n^2}θ}}{4}$=$\frac{tanθ+1}{17tanθ}+\frac{si{n}^{2}θ}{4(si{n}^{2}θ+co{s}^{2}θ)}$
=$\frac{tanθ+1}{17tanθ}+\frac{ta{n}^{2}θ}{4(ta{n}^{2}θ+1)}$=$\frac{4+1}{68}+\frac{16}{68}=\frac{21}{68}$.
故选:B.

点评 本题考查了同角三角函数间基本关系的运用,熟练掌握基本关系是解本题的关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.等腰△ABC,E为底边BC的中点,沿AE折叠,如图,将C折到点P的位置,使二面角P-AE-C的大小为120°,设点P在面ABE上的射影为H.
(I)证明:点H为BE的中点;
(II)若AB=AC=2$\sqrt{2}$,AB⊥AC,求直线BE与平面ABP所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知tanθ=2,则sinθcosθ=$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C:x2+y2-2x-4y-20=0及直线l:(2m+1)x+(m+1)y=7m+4(m∈R).
(1)证明:不论m取什么实数,直线l与圆C总相交;
(2)求直线l被圆C截得的弦长的最小值及此时的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=2x+2,则f(2)的值为(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c.当钝角△ABC的三边a,b,c是三个连续整数时,则△ABC外接圆的半径为$\frac{{8\sqrt{15}}}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$y=lg(x-2)+\sqrt{3-x}$,则其定义域为(2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)计算 $\frac{\sqrt{3}sin(-\frac{20}{3}π)}{tan\frac{11}{3}π}$-cos$\frac{13}{4}$π•tan(-$\frac{37}{4}$π).
(2)已知tan α=$\frac{4}{3}$,求下列各式的值:①$\frac{sin2α+2sinαcosα}{2cos2α-sin2α}$;②sin αcos α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知sinα+cosα=$\frac{1}{5}$   且 0<α<π求:
(1)sinαcosα;
(2)tanα.

查看答案和解析>>

同步练习册答案