精英家教网 > 高中数学 > 题目详情

【题目】设f(x)=ex(ex﹣ax﹣1)且f(x)≥0恒成立.
(1)求实数a的值;
(2)证明:f(x)存在唯一的极大值点x0 , 且

【答案】
(1)解:f(x)=ex(ex﹣ax﹣1)≥0,因为ex>0,所以ex﹣ax﹣1≥0恒成立,

令φ(x)=ex﹣ax﹣1,x∈R,问题等价φ(x)≥0恒成立,

∴φ'(x)=ex﹣a,

当a≤0时,φ(x)在x∈R单调递增,又φ(0)=0当x∈(﹣∞,0)时,φ(x)<0矛盾,

当a>0时,φ(x)在(﹣∞,lna)单调递减,在(lna,+∞)单调递增,

∴φ(x)≥0恒成立,等价为φ(lna)=elna﹣alna﹣1≥0,即a﹣alna﹣1≥0,

又令g(a)=a﹣alna﹣1,(a>0),g'(a)=1﹣lna﹣1=﹣lna,

∴g(a)在(0,1)单调递增,在(1,+∞)单调递减,而g(1)=0,

所以不等式a﹣alna﹣1≥0的解为a=1,综上a=1


(2)证明:f'(x)=ex(2ex﹣x﹣2),令h(x)=2ex﹣x﹣2,h'(x)=2ex﹣1,

所以h(x)在 单调递减,在 单调递增

由零点存在定理及h(x)的单调性知,方程h(x)=0在 有唯一根,

设为x0 ,从而h(x)有两个零点x0和0,

所以f(x)在(﹣∞,x0)单调递增,在(x0,0)单调递减,在(0,+∞)单调递增,

从而f(x)存在唯一的极大值点x0即证,

取等不成立,所以 得证,

又∵ 在(﹣∞,x0)单调递增

所以 得证,

从而且 成立


【解析】(1)由题意不难得出ex﹣ax﹣1≥0恒成立,令φ(x)=ex﹣ax﹣1,x∈R,问题等价φ(x)≥0恒成立,通过讨论a的范围,求出函数的单调区间,得到关于a的不等式,解出即可;(2)令h(x)=2ex﹣x﹣2,根据h ( 2 ) h ( l n ) < 0 由零点存在定理及h(x)的单调性知,方程h(x)=0在 ( 2 , l n ) 有唯一根,设为x0且 2 e x 0 x 0 2 = 0 ,从而证明结论.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的极值与导数的理解,了解求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数既是奇函数又在(0,+∞)上单调递减的是( )
A.f(x)=x4
B.
C.
D.f(x)=x3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,且a≠1,函数f(x)=ax﹣1,g(x)=﹣x2+xlna.
(1)若a>1,证明函数h(x)=f(x)﹣g(x)在区间(0,+∞)上是单调增函数;
(2)求函数h(x)=f(x)﹣g(x)在区间[﹣1,1]上的最大值;
(3)若函数F(x)的图象过原点,且F′(x)=g(x),当a>e 时,函数F(x)过点A(1,m)的切线至少有2条,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x3+x2
(1)求f(x)在R上的解析式;
(2)当x∈[m,n](0<m<n)时,若f(x)的值域为[3m2+2m﹣1,3n2+2n﹣1],求实数m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线y=ax+2与曲线y=f(x)交于A、B两点,其中A是切点,记h(x)= ,g(x)=f(x)﹣ax,则下列判断正确的是( )

A.h(x)只有一个极值点
B.h(x)有两个极值点,且极小值点小于极大值点
C.g(x)的极小值点小于极大值点,且极小值为﹣2
D.g(x)的极小值点大于极大值点,且极大值为2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 经过点 ,离心率为 为坐标原点.
(I)求椭圆 的方程.
(II)若点 为椭圆 上一动点,点 与点 的垂直平分线l交 轴于点 ,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2+c,g(x)=aex的图象的一个公共点为P(2,t),且曲线y=f(x),y=g(x)在P点处有相同的切线,若函数f(x)﹣g(x)的负零点在区间(k,k+1)(k∈Z)内,则k=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人各射击一次,击中目标的概率分别是 .假设两人射击是否击中目标,相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响.
(1)求甲射击4次,至少1次未击中目标的概率;
(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;
(3)假设某人连续2次未击中目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直线l:x+ y﹣c=0(c>0)为公海与领海的分界线,一艘巡逻艇在O处发现了北偏东60°海面上A处有一艘走私船,走私船正向停泊在公海上接应的走私海轮B航行,以使上海轮后逃窜.已知巡逻艇的航速是走私船航速的2倍,且两者都是沿直线航行,但走私船可能向任一方向逃窜.
(1)如果走私船和巡逻船相距6海里,求走私船能被截获的点的轨迹;
(2)若O与公海的最近距离20海里,要保证在领海内捕获走私船(即不能截获走私船的区域与公海不想交).则O,A之间的最远距离是多少海里?

查看答案和解析>>

同步练习册答案