精英家教网 > 高中数学 > 题目详情
8.求椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$上的点到直线x-2y+4$\sqrt{2}$=0的最大距离.

分析 设出与x-2y+4$\sqrt{2}$=0平行且与椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$相切的直线方程为x-2y+m=0,联立直线方程和椭圆方程,由判别式等于0求得m值,把椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$上的点到直线x-2y+4$\sqrt{2}$=0的最大距离转化为椭圆的两条相切的平行线间的距离得答案.

解答 解:设与x-2y+4$\sqrt{2}$=0平行且与椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$相切的直线方程为x-2y+m=0,
联立$\left\{\begin{array}{l}{x-2y+m=0}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,得2x2+2mx+m2-16=0.
△=4m2-8(m2-16)=128-4m2=0,解得:m=$±4\sqrt{2}$.
∴直线x-2y+4$\sqrt{2}$=0与椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$相切,
则椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$上的点到直线x-2y+4$\sqrt{2}$=0的最大距离为d=$\frac{|4\sqrt{2}-(-4\sqrt{2})|}{\sqrt{5}}=\frac{8\sqrt{10}}{5}$.

点评 本题考查椭圆的简单性质,考查了直线和圆锥曲线的关系,体现了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列函数中,在区间(0,1)上为增函数的是(  )
A.y=sin2xB.$y={x^{\frac{3}{2}}}$C.$y={({\frac{1}{3}})^x}$D.y=|log2x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.为了得到函数$y=\sqrt{2}cos3x$的图象,可以将函数y=$\sqrt{2}$cos$\frac{3}{2}$x的图象所有点的(  )
A.横坐标伸长到原来的2倍(纵坐标不变)得到
B.横坐标缩短到原来的$\frac{1}{2}$(纵坐标不变)得到
C.纵坐标伸长到原来的2倍(横坐标不变)得到
D.纵坐标缩短到原来的$\frac{1}{2}$(横坐标不变)得到

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的首项a1=$\frac{1}{4}$的等比数列,其前n项和Sn中S3=$\frac{3}{16}$,
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log${\;}_{\frac{1}{2}}$|an|,Tn=$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若非零向量$\vec a$与向量$\vec b$的夹角为钝角,$|{\vec b}|=2$,且当$t=-\frac{1}{2}$时,$|{\vec b-t\vec a}|$(t∈R)取最小值$\sqrt{3}$.向量$\vec c$满足$({\vec c-\vec b})⊥({\vec c-\vec a})$,则当$\vec c•({\vec a+\vec b})$取最大值时,$|{\vec c-\vec b}|$等于(  )
A.$\sqrt{6}$B.$2\sqrt{3}$C.$2\sqrt{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在(-∞,+∞)上的函数f(x)是奇函数,且f(2-x)=f(x),则f(2010)值为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.正三棱柱ABC-A1B1C1的各棱长都为2,E,F分别为AB、A1C1的中点,则EF的长是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.不等式(2-|x|)(2+x)>0的解集为(-∞,-2)∪(-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知全集U=R,A={x|x2-7x+10≤0},B={x|x-x2+6<0},求:
(1)A∩B   
(2)∁R(A∪B)    
(3)(∁RA)∪B.

查看答案和解析>>

同步练习册答案