分析 根据不定积分的线性运算法则,根据基本不定积分积分的公式,计算即可.
解答 解:(1)∫$\frac{{3}^{x}-{e}^{x}}{{2}^{x}}$dx=${∫}_{\;}^{\;}$$(\frac{3}{2})^{x}$dx-${∫}_{\;}^{\;}$$(\frac{e}{2})^{x}$dx=($\frac{3}{2}$)x•$\frac{1}{ln\frac{3}{2}}$+($\frac{e}{2}$)x•ln$\frac{e}{2}$+c═($\frac{3}{2}$)x•$\frac{1}{ln\frac{3}{2}}$+(1-ln2)($\frac{e}{2}$)x+c,
(2)∫$\frac{1}{{x}^{2}(1+{x}^{2})}$dx=${∫}_{\;}^{\;}$($\frac{1}{{x}^{2}}$-$\frac{1}{{x}^{2}+1}$)dx=-$\frac{1}{x}$-arctanx+c.
点评 本题主要考查求不定积分的方法,要求与一定的计算量,以及一些固定函数不定积分的记忆,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | ${2^{\frac{3}{2}}}$ | B. | $2^{-\frac{1}{2}}$ | C. | $2^{\frac{1}{3}}$ | D. | $2^{\frac{2}{3}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | φ=$\frac{π}{4}$是f(x)=3in(x-2φ)的图象关于y轴对称的充分不必要条件 | |
| B. | |$\overrightarrow{a}$|-|$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|的充要条件是$\overrightarrow{a}$与$\overrightarrow{b}$方向相同 | |
| C. | a,b,c都为实数,b=$\sqrt{ac}$是a,b,c三数成等比数列的充分不必要条件 | |
| D. | m=3是直线(m+3)x+my-2=0与mx-6y+5=0互相垂直的充要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8p2 | B. | 4p2 | C. | 2p2 | D. | p2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com