精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式的值域为[-4,2)∪(2,3],它的定义域为A,B={x|(x-a-2)(x-a-3)<0},若A∩B≠∅,求a的取值范围.

解:由已知
∵f(x)=-4时,,f(x)=3时,x=4

∵B={x|[x-(a+2)][x-(a+3)]<0},∴B={x|a+2≤x≤a+3},
又A∩B≠∅,
∴a+2≤,或a+3≥4,即a≤,或a≥1
∴a的取值范围为a≤,或a≥1
分析:根据已知函数f(x)=的值域为[-4,2)∪(2,3],我们可以求出它的定义域为A,解二次不等式,可以求出B,再根据A∩B≠∅,我们可以构造一个关于a的不等式组,解不等式组即可得到a的取值范围.
点评:本题考查的知识点是函数定义域及其求法和集合的交集及其运算,结合函数的解析式及其值域,求出函数的定义域是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、已知函数f(x)=2x的反函数为f-1(x),则f-1(x)<0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3的切线的斜率等于1,则这样的切线有(  )
A、1条B、2条C、3条D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|sinx|的图象与直线y=kx(k>0)有且仅有三个交点,交点的横坐标的最大值为α,求证:
cosα
sinα+sin3α
=
1+α2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2的图象在P(a,-a2)(a≠0)处的切线与两坐标轴所围成的三角形的面积为2,则实数a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x的图象与函数g(x)的图象关于直线y=x对称,令h(x)=g(1-|x|)则关于函数h(x)有下列命题:
①h(x)为图象关于y轴对称;
②h(x)是奇函数;
③h(x)的最小值为0;
④h(x)在(0,1)上为减函数.
其中正确命题的序号为
①④
①④
(注:将所有正确命题的序号都填上).

查看答案和解析>>

同步练习册答案