设项数均为
(
)的数列
、
、
前
项的和分别为
、
、
.已知
,且集合
=
.
(1)已知
,求数列
的通项公式;
(2)若
,求
和
的值,并写出两对符合题意的数列
、
;
(3)对于固定的
,求证:符合条件的数列对(
,
)有偶数对.
(1)
;(2)
时,数列
、
可以为(不唯一)6,12,16,14;2,8,10,4,
时,数列对(
,
)不存在.(3)证明见解析.
【解析】
试题分析:(1)这实质是已知数列的前
项和
,要求通项公式
的问题,利用关系
来解决;
(2)注意到![]()
,从而
,又![]()
,故可求出
,
,这里我们应用了整体思维的思想,而要写出数列对(
,
),可通过列举法写出;(3)可通过构造法说明满足题意和数列对是成对出现的,即对于数列对(
,
),构造新数列对
,
(
),则数列对(
,
)也满足题意,(要说明的是
及
=
且数列
与
,
与
不相同(用反证法,若相同,则
,又
,则有
均为奇数,矛盾).
试题解析:(1)
时,![]()
时,
,
不适合该式
故,
4分
(2)![]()
![]()
![]()
又![]()
![]()
得,
=46,
=26
8分
数列
、
可以为:
① 16,10,8,12;14,6,2,4 ② 14,6,10,16;12,2,4,8
③ 6,16,14,10;4,12,8,2 ④ 4,14,12,16;2,10,6,8
⑤ 4,12,16,14;2,8,10,6 ⑥ 16,8,12,10;14,4,6,2 10分
(3)令
,
(
) 12分
![]()
又
=
,得
![]()
=![]()
所以,数列对(
,
)与(
,
)成对出现。 16分
假设数列
与
相同,则由
及
,得
,
,均为奇数,矛盾!
故,符合条件的数列对(
,
)有偶数对。
18分
考点:(1)数列的前
项和
与
的关系;(2)整体思想与列举法;(3)构造法.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:2013-2014学年上海市浦东新区高三上学期期末考试(一模)理科数学试卷(解析版) 题型:解答题
设项数均为
(
)的数列
、
、
前
项的和分别为
、
、
.已知集合
=
.
(1)已知
,求数列
的通项公式;
(2)若![]()
,试研究
和
时是否存在符合条件的数列对(
,
),并说明理由;
(3)若
,对于固定的
,求证:符合条件的数列对(
,
)有偶数对.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com