精英家教网 > 高中数学 > 题目详情
有两排座位,前排11个座位,后排12个座位,现安排2人就坐,规定前排中间的3个座位不能坐,并且这两人不左右相邻,那么不同的排法种数是(   )
  A. 234       B. 346       C. 350       D. 363
B  解析:将安排这二人就坐的排法分为三类:
  第一类,两人均在后排,排法种数为
  第二类,两人均在前排,排法种数为 (同左或同右)=44;
  第三类,两人分别在前排或后排,排法种数为  ∴ 不同排法种数为 110+44+192=346,应选B。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

11、有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

18、有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排正中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是
346

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)有两排座位,前排11个座位,后排12个座位.现在安排甲、乙2人就座,规定前排中间的3个座位不能坐,并且甲、乙不能左右相邻,则一共有不同安排方法多少种?
346
346
(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,共有多少种不同排法?

查看答案和解析>>

同步练习册答案