精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,且
(1)求实数c的值;
(2)解不等式

【答案】
(1)解:∵0<c<1,

∴c2<c,又f(c2)= ,即c3+1=

解得c=


(2)解:∵f(x)= ,由f(x)> +1得:

当0<x< 时,解得 <x<

≤x<1时解得 ≤x<1,

∴f(x)> +1的解集为{x| <x<1}


【解析】(1)由题意知,0<c<1,于是c2<c,从而由f(c2)= 即可求得实数c的值;(2)利用f(x)= ,解不等式f(x)> +1即可求得答案.
【考点精析】本题主要考查了函数的零点的相关知识点,需要掌握函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【2017河北唐山三模】已知函数 .

(1)讨论函数的单调性;

(2)若函数在区间有唯一零点,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,点M是AB的中点,则直线DB1与MC所成角的余弦值为(
A.﹣
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC=120°,AC=3,△ABC的面积等于 ,D为边长BC上一点.

(1)求BC的长;
(2)当AD= 时,求cos∠CAD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的一元二次方程x2+2ax+b2=0.
(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.
(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

ABC三个内角A、B、C所对的边分别为a,b,c. 已知C=,acosA=bcosB.

(1)求角A的大小;

(2)如图,在ABC的外角ACD内取一点P使得PC=2.过点P分别作直线CA、CD的垂线PM、PN,垂足分别是M、N.设PCA=α,求PM+PN的最大值及此时α的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分为16为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y与月处理量x之间的函数关系可近似地表示为

且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿

1当x[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?

2该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题
(1)在边长为1的正方形ABCD内任取一点M,求事件“|AM|≤1”的概率;
(2)某班在一次数学活动中,老师让全班56名同学每人随机写下一对都小于1的正实数x、y,统计出两数能与1构成锐角三角形的三边长的数对(x,y)共有12对,请据此估计π的近似值(精确到0.001).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电视传媒公司为了了解某类体育节目的收视情况,随机抽取了100名观众进行调查,如图是根据调查结果绘制的观众日均收看该类体育节目时间的频率分布直方图,其中收看时间分组区间是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].将日均收看该类体育节目时间不低于40分钟的观众称为“体育迷”.则抽取的100名观众中“体育迷”有名.

查看答案和解析>>

同步练习册答案