12£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÇúÏßC1µÄ¼«×ø±ê·½³ÌΪpcos£¨¦È-$\frac{¦Ð}{3}$£©=-1£¬ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+\sqrt{2}cos¦Á}\\{y=1+\sqrt{2}sin¦Á}\end{array}\right.$£¬£¨ÆäÖЦÁΪ²ÎÊý£¬¦Á¡Ê[0£¬2¦Ð£©£©£¬µãA£¬B·Ö±ðÔÚÇúÏßC1£¬C2ÉÏ£®
£¨1£©ÇóÇúÏßC1µÄÖ±½Ç×ø±ê·½³ÌºÍÇúÏßC2µÄÆÕͨ·½³Ì£»
£¨2£©ÊÔÇóÁ½ÇúÏßÉϵãA£¬B¾àÀëµÄ×îСֵ£®

·ÖÎö £¨1£©ÓÉ$\frac{1}{2}¦Ñcos¦È$+$\frac{\sqrt{3}}{2}sin¦È$+1=0£¬ÄÜÇó³öÇúÏßC1µÄÖ±½Ç×ø±ê·½³Ì£¬ÇúÏßC2ÖÐÏûÈ¥²ÎÊý£¬ÄÜÇó³öÇúÏßC2µÄÆÕͨ·½³Ì£®
£¨2£©ÉèB£¨1+$\sqrt{2}cos¦Á$£¬1+$\sqrt{2}sin¦Á$£©£¬Çó³öµãBµ½ÇúÏßC1µÄ¾àÀ룬ÀûÓÃÈý½Çº¯ÊýÄÜÇó³öÁ½ÇúÏßÉϵãA£¬B¾àÀëµÄ×îСֵ£®

½â´ð ½â£º£¨1£©¡ßÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨¦È-$\frac{¦Ð}{3}$£©=-1£¬¼´$\frac{1}{2}¦Ñcos¦È$+$\frac{\sqrt{3}}{2}sin¦È$+1=0£¬
¡àÇúÏßC1µÄÖ±½Ç×ø±ê·½³ÌΪx+$\sqrt{3}y$+2=0£¬
¡ßÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+\sqrt{2}cos¦Á}\\{y=1+\sqrt{2}sin¦Á}\end{array}\right.$£¬
¡àÇúÏßC2µÄÆÕͨ·½³ÌΪ£¨x-1£©2+£¨y-1£©2=2£®
£¨2£©¡ßµãA£¬B·Ö±ðÔÚÇúÏßC1£¬C2ÉÏ£¬¡àÉèB£¨1+$\sqrt{2}cos¦Á$£¬1+$\sqrt{2}sin¦Á$£©£¬
µãBµ½ÇúÏßC1µÄ¾àÀëd=$\frac{|1+\sqrt{2}cos¦Á+\sqrt{3}+\sqrt{6}sin¦Á+2|}{\sqrt{1+3}}$=$\frac{2\sqrt{2}sin£¨¦Á+¦È£©+\sqrt{3}+3}{2}$£¬
¡àÁ½ÇúÏßÉϵãA£¬B¾àÀëµÄ×îСֵdmin=$\frac{\sqrt{3}+3}{2}-\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÇúÏßµÄÖ±½Ç×ø±ê·½³ÌºÍÆÕͨ·½³ÌµÄÇ󷨣¬¿¼²éÁ½ÇúÏßÉϵãA£¬B¾àÀëµÄ×îСֵµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÁ½µã¼ä¾àÀ빫ʽµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®£¨x2-$\frac{3}{{x}^{3}}$£©5µÄÕ¹¿ªÊ½Öг£ÊýÏîΪ£¨¡¡¡¡£©
A£®270B£®-270C£®-90D£®90

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®¶ÔÓÚº¯Êýf£¨x£©£¬Èô´æÔÚÇø¼äA=[m£¬n]£¬Ê¹µÃ{y|y=f£¨x£©£¬x¡ÊA}=A£¬Ôò³Æº¯Êýf£¨x£©Îª¡°¿ÉµÈÓòº¯Êý¡±£¬Çø¼äAΪº¯Êýf£¨x£©µÄÒ»¸ö¡°¿ÉµÈÓòÇø¼ä¡±£¬¸ø³öÏÂÁÐËĸöº¯Êý£º
¢Ùf£¨x£©=sin£¨$\frac{¦Ð}{2}$x£©
¢Úf£¨x£©=|2x-1|
¢Ûf£¨x£©=2x2-1
¢Üf£¨x£©=log2£¨2x-2£©£®
ÆäÖдæÔÚΨһ¡°¿ÉµÈÓòÇø¼ä¡±µÄ¡°¿ÉµÈÓòº¯Êý¡±µÄÐòºÅΪ¢Ú¢Û£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®À¾­ÓªÁËÁ½¼Òµç¶¯½Î³µÏúÊÛÁ¬Ëøµê£¬ÆäÔÂÀûÈ󣨵¥Î»£ºÔª£©·Ö±ðΪL1=-5x2+900x-10000£¬L2=300x-1000£¨ÆäÖÐxΪÏúÊÛÁ¾Êý£©£¬ÈôijÔÂÁ½Á¬Ëøµê¹²ÏúÊÛÁË110Á¾£¬ÔòÄÜ»ñµÃµÄ×î´óÀûÈóΪ£¨¡¡¡¡£©
A£®11000B£®22000C£®33000D£®40000

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑ֪˫ÇúÏßC1£º2x2-y2=1£®
£¨1£©ÉèFÊÇC1µÄ×󽹵㣬EÊÇC1ÓÒÖ§ÉÏÒ»µã£®Èô|EF|=2$\sqrt{2}$£¬ÇóEµãµÄ×ø±ê£»
£¨2£©ÉèбÂÊΪ1µÄÖ±Ïßl½»C1ÓÚP¡¢QÁ½µã£¬ÈôlÓëÔ²x2+y2=1ÏàÇУ¬ÇóÖ¤£ºOP¡ÍOQ£»
£¨3£©ÉèÍÖÔ²C2£º4x2+y2=1£®ÈôM¡¢N·Ö±ðÊÇC1¡¢C2Éϵ͝µã£¬ÇÒOM¡ÍON£¬ÇóÖ¤£ºOµ½Ö±ÏßMNµÄ¾àÀëÊǶ¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑ֪ʵÊýx£¬yÂú×ã$\left\{\begin{array}{l}y¡Ý1\\ y¡Ü2x-1\\ x+y¡Üm\end{array}\right.$£¬Èç¹ûÄ¿±êº¯Êýz=3x-2yµÄ×îСֵΪ-1£¬ÔòʵÊýmµÈÓÚ8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®¸´Êýz=$\frac{2}{1-i}$£¬Ôò¸´ÊýzµÄÄ£ÊÇ£¨¡¡¡¡£©
A£®1B£®$\sqrt{2}$C£®$\sqrt{3}$D£®2$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®16¦Ð-16B£®16¦ÐC£®16¦Ð-8D£®64

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÈôË«ÇúÏߵĽ¥½üÏß·½³ÌΪ2x¡Ày=0£¬ÇÒ¹ýµã£¨1£¬2$\sqrt{2}$£©£¬ÔòË«ÇúÏߵķ½³ÌΪ$\frac{{y}^{2}}{4}-{x}^{2}=1$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸