精英家教网 > 高中数学 > 题目详情

设函数时,y的值有正有负,则实数a的范围是(  )

A、   B、   C、     D、

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
]
上是减函数,在[
a
,+∞)
上是增函数.
(1)如果函数y=x+
2b
x
(x>0)
在(0,4]上是减函数,在[4,+∞)上是增函数,求b的值.
(2)设常数c∈[1,4],求函数f(x)=x+
c
x
(1≤x≤2)
的最大值和最小值;
(3)当n是正整数时,研究函数g(x)=xn+
c
xn
(c>0)
的单调性,并说明理由.

查看答案和解析>>

科目:高中数学 来源:上海 题型:解答题

已知函数y=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
]
上是减函数,在[
a
,+∞)
上是增函数.
(1)如果函数y=x+
2b
x
(x>0)
在(0,4]上是减函数,在[4,+∞)上是增函数,求b的值.
(2)设常数c∈[1,4],求函数f(x)=x+
c
x
(1≤x≤2)
的最大值和最小值;
(3)当n是正整数时,研究函数g(x)=xn+
c
xn
(c>0)
的单调性,并说明理由.

查看答案和解析>>

科目:高中数学 来源:上海高考真题 题型:解答题

已知函数y=x+有如下性质:如果常数a>0,那么该函数在(0,] 上是减函数,在[,+∞)上是增函数,
(1)如果函数y=x+(x>0)在(0,4]上是减函数,在[4,+∞)上是增函数,求b的值;
(2)设常数c∈[1,4],求函数f(x)=x+(1≤x≤2)的最大值和最小值;
(3)当n是正整数时,研究函数g(x)=xn+(c>0)的单调性,并说明理由。

查看答案和解析>>

科目:高中数学 来源:河北省冀州中学09-10学年高一上学期第一次月考 题型:选择题

 设函数时,y的值有正有负,则实数a的范围是(  )

A、   B、   C、     D、

 

查看答案和解析>>

同步练习册答案