精英家教网 > 高中数学 > 题目详情
3.若角α的终边经过点P(-2cos60°,-$\sqrt{2}$sin45°),则sinα的值为(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

分析 角α的终边经过点P(-2cos60°,-$\sqrt{2}$sin45°),即x=-2cos60°=-1,y=-$\sqrt{2}$sin45°=-1,利用三角函数的定义求出sinα的值.

解答 解:角α的终边经过点P(-2cos60°,-$\sqrt{2}$sin45°),即x=-2cos60°=-1,y=-$\sqrt{2}$sin45°=-1,
∴sinα=-$\frac{\sqrt{2}}{2}$,
故选D.

点评 本题考查三角函数的定义,考查特殊角的三角函数,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图1,已知长方形ABCD中,AB=2,AD=1,E为DC的中点.将△ADE沿AE折起,使得平面ADE⊥平面ABCE.
(1)求证:平面BDE⊥平面ADE
(2)求三棱锥 C-BDE的体积

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知F1、F2是椭圆和双曲线的公共焦点,P是他们的一个公共点,且∠F1PF2=$\frac{π}{3}$,则椭圆和双曲线的离心率的倒数之和的最大值为$\frac{{4\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知抛物线y2=2px(p>0),过其焦点且斜率为2的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为1,则该抛物线的准线方程为(  )
A.x=1B.x=-1C.x=2D.x=-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,建立平面直角坐标系xoy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-$\frac{1}{20}$(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.
(1)若k=2,求炮的射程;
(2)求炮的最大射程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.给出下列命题:
①函数y=sin($\frac{5π}{2}$-2x)是偶函数;
②方程x=$\frac{π}{8}$是函数y=sin(2x+$\frac{5π}{4}$)的图象的一条对称轴方程;
③若α、β是第一象限角,且α>β,则sinα>sinβ;
④设x1、x2是关于x的方程|logax|=k(a>0,a≠1,k>0)的两根,则x1x2=1;
其中正确命题的序号是①②④.(填出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△OAB中,C是线段AB上一点,且CB=2AC,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,试用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知F1、F2是椭圆E:$\frac{{y}^{2}}{{b}^{2}}$+$\frac{{x}^{2}}{{a}^{2}}$=1(a>b>0)的左、右焦点,椭圆E的离心率为$\frac{1}{2}$.过原点O的直线交椭圆于C、D两点,若四边形C F1DF2的面积最大值为2$\sqrt{3}$.
(1)求椭圆E的方程
(2)若直线1与椭圆E交于A、B且OA⊥OB,求证:原点O到直线1的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数y=(α-1)x-4α-2是幂函数,则实数α的值是2.

查看答案和解析>>

同步练习册答案