一个四棱锥的三视图和直观图如图所示,E为侧棱PD的中点.
(1)求证:PB//平面AEC;
(2)若F为侧棱PA上的一点,且, 则为何值时,PA平面BDF? 并求此时几何体F—BDC的体积.
(2)
(1)由图形可知该四棱锥和底面ABCD是菱形,且有一角为,边长为2,
锥体高度为1。
设AC,BD和交点为O,连OE,OE为△DPB的中位线,
OE//PB, 3分
EO面EAC,PB面EAC内, PB//面AEC。 6分
(2)过O作OFPA垂足为F ,
在Rt△POA中,PO=1,AO=,PA=2,在Rt△POB中,PO=1,BO=1,PB=, 8分
过B作PA的垂线BF,垂足为F,连DF,由于△PAB≌△PAD,故DF⊥PA,DF∩BF=F,因此PA⊥面BDF. 10分
在等腰三角形PAB中解得AF=,进而得PF=
即当时,PA面BDF, 12分
此时F到平面BDC的距离FH=
14分
科目:高中数学 来源: 题型:
PF | FA |
查看答案和解析>>
科目:高中数学 来源: 题型:
PF | FA |
查看答案和解析>>
科目:高中数学 来源:2009-2010学年广东省东莞市高三(上)期末数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省泰州市泰兴三中高三数学调研试卷(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com