精英家教网 > 高中数学 > 题目详情
判断下列命题是全称命题还是特称命题,写出这些命题的否定,并说出这些否定的真假,不必证明.
(Ⅰ)存在实数x,使得x2+2x+3<0;
(Ⅱ)有些三角形是等边三角形;
(Ⅲ)方程x2-8x-10=0的每一个根都不是奇数.
(本小题满分15分)(课本例题、习题改)
(Ⅰ)该命题是特称命题,(2分)
该命题的否定是:对任意一个实数x,都有x2+2x+3≥0(4分)
该命题的否定是真命题.(5分)
(Ⅱ)该命题是特称命题,(7分)
该命题的否定是:所有三角形都不是等边三角形(9分)
该命题的否定是假命题.(10分)
(Ⅲ)该命题是全称命题,(12分)
该命题的否定是:方程x2-8x-10=0至少有一个奇数根(14分)
(或:方程x2-8x-10=0至少有一个根是奇数)
该命题的否定是假命题.(15分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

设有两个命题:①关于x的不等式mx2+1>0的解集是R;②函数f(x)=logmx是减函数,如果这两个命题有且只有一个真命题,则实数m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

关于y=3sin(2x+
π
4
)
有以下命题:
①若f(x1)=f(x2)=0,则x1-x2
π
2
的整数倍;
②函数解析式可改写为y=3cos(2x-
π
4
)

③函数图象关于x=-
π
8
对称;
④函数图象关于点(-
π
8
,0)
对称;
其中正确的命题是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中,正确命题的个数是(  )
①命题“?x∈R,使得x3+1<0”的否定是““?x∈R,都有x3+1>0”.
②双曲线
x2
a2
-
y2
b2
=1(a>0,a>0)中,F为右焦点,A为左顶点,点B(0,b)且
AB
BF
=0,则此双曲线的离心率为
5
+1
2

③在△ABC中,若角A、B、C的对边为a、b、c,若cos2B+cosB+cos(A-C)=1,则a、c、b成等比数列.
④已知
a
b
是夹角为120°的单位向量,则向量λ
a
+
b
a
-2
b
垂直的充要条件是λ=
5
4
A.1 个B.2 个C.3 个D.4 个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列命题:
①若f(x)存在导函数,则f′(2x)=[f(2x)]′;
②若函数h(x)=cos4x-sin4x,则h′(
π
12
)=0

③若函数g(x)=(x-1)(x-2)(x-3)…(x-2012)(x-2013),则g′(2013)=2012!;
④函数f(x)=
sinx
2+cosx
的单调递增区间是(2kπ-
3
,2kπ+
3
)(k∈z)

其中真命题为______.(填序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

关于下列命题,正确的序号是______.
①函数y=tanx最小正周期是π;
②函数y=cos2(
π
4
-x)是偶函数;
③函数y=4sin(2x-
π
3
)的一个对称中心是(
π
6
,0);
④函数y=sin(x+
π
4
)在闭区间[-
π
2
π
2
]上是增函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于函数f(x)=2x-2-x(x∈R)有下列三个结论:
①f(x)的值域为R;
②f(x)是R上的增函数;
③对任意x∈R,有f(-x)+f(x)=0成立;
其中所有正确的序号为(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列四个命题:
①若直线垂直于平面内的两条直线,则这条直线垂直于这个平面;
②若直线与平面内的任意一条直线都垂直,则这条直线垂直于这个平面;
③若直线l平面α,直线m平面α,则lm;
④若直线a直线b,且直线l⊥a,则l⊥b.
其中正确命题的序号是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设p:实数x满足x2-4ax+3a2<0,其中a≠0,q:实数x满足
x2-x-6≤0
x2+2x-8>0

(Ⅰ)若a=1,p且q为真,求实数x的取值范围;
(Ⅱ)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案