精英家教网 > 高中数学 > 题目详情

设x,y,z∈R,x2+y2+z2=25,试求x+2y+2z的最大值________.

15
分析:分析题目已知x2+y2+z2=25,求x+2y+2z的最大值.考虑到应用柯西不等式(ax+by+cz)2≤(a2+b2+c2)(x2+y2+z2),首先构造出柯西不等式求出(x+2y+2z)2的最大值,开平方根即可得到答案.
解答:因为已知x2+y2+z2=25根据柯西不等式(ax+by+cz)2≤(a2+b2+c2)(x2+y2+z2)构造得:
即(x+2y+2z)2≤(x2+y2+z2)(12+22+22)≤25×9=225
故x+2y+2z≤15
故答案为:15
点评:此题主要考查柯西不等式的应用问题,对于此类题目有很多解法,但大多数比较繁琐,而用柯西不等式求解非常简练,需要同学们注意掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x,y,z∈R且x+2y+3z=1
(I)当z=1,|x+y|+|y+1|>2时,求x的取值范围;
(II)当x>0,y>0,z>0时,求u=
x2
x+1
+
2y2
y+2
+
3z2
z+3
的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省绍兴一中分校高三(上)10月月考数学试卷(理科)(解析版) 题型:解答题

设x,y,z∈R且x+2y+3z=1
(I)当z=1,|x+y|+|y+1|>2时,求x的取值范围;
(II)当x>0,y>0,z>0时,求的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省台州中学高三(上)第一次统练数学试卷(文科)(解析版) 题型:解答题

设x,y,z∈R且x+2y+3z=1
(I)当z=1,|x+y|+|y+1|>2时,求x的取值范围;
(II)当x>0,y>0,z>0时,求的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省绍兴一中分校高三(上)10月月考数学试卷(文科)(解析版) 题型:解答题

设x,y,z∈R且x+2y+3z=1
(I)当z=1,|x+y|+|y+1|>2时,求x的取值范围;
(II)当x>0,y>0,z>0时,求的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省绍兴一中分校高三(上)10月月考数学试卷(理科)(解析版) 题型:解答题

设x,y,z∈R且x+2y+3z=1
(I)当z=1,|x+y|+|y+1|>2时,求x的取值范围;
(II)当x>0,y>0,z>0时,求的最小值.

查看答案和解析>>

同步练习册答案