精英家教网 > 高中数学 > 题目详情
如图,在正三棱柱ABC-A1B1C1中,点D为棱AB的中点,BC=1,AA1=
3

(1)求证:BC1∥平面A1DC;
(2)求三棱锥D-A1B1C 的体积.
考点:棱柱、棱锥、棱台的体积
专题:空间位置关系与距离
分析:(1)连接AC1,交A1C于点O,连结OD,由已知得OD∥BC1,由此能证明BC1∥平面A1DC.
(2)由已知得AB⊥CD,从而CD⊥平面ABB1A1,进而CD⊥平面DB1A1,由此能求出三棱锥D-A1B1C 的体积.
解答: (1)证明:连接AC1,交A1C于点O,连结OD,
∵ACC1A1是平行四边形,
∴O为AC1中点,
∵D为AB的中点,
∴OD∥BC1,OD=
1
2
BC1,BC1?平面A1CD,OD?平面A1CD,
∴BC1∥平面A1DC.

(2)解:正△ABC中,
∵D为AB的中点,
∴AB⊥CD,
又∵平面ABC⊥平面ABB1A1
∴CD⊥平面ABB1A1
∴CD⊥平面DB1A1
∵CD=
3
2
SA1B1D=
3
2

VD-A1B1C= C-A1B1D=
1
3
CD•SA1B1D
=
1
3
×
3
2
×
3
2
=
1
4
点评:本题考查直线与平面平行的证明,考查三棱锥的体积的求法,解题时要注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:“任意x∈R时,都有x2-x+
1
4
>0”;命题q:“存在x∈R,使sinx+cosx=
2
成立”.则下列判断正确的是(  )
A、命题q为假命题
B、命题P为真命题
C、p∧q为真命题
D、p∨q是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 f(α)=
sin(
2
+α)+2sin(π-α)
3cos(
π
2
-α)-cos(π-α)

(Ⅰ)化简f(α);
(Ⅱ)已知tanα=3,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x>-2},B={x|x<3},求A∩B,A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,A1B⊥平面ABC,AB⊥AC.
(Ⅰ)求证:AC⊥BB1
(Ⅱ)若P是棱B1C1的中点,求平面PAB将三棱柱ABC-A1B1C1分成的两部分体积之比.撸啊.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,棱长为2的正方体ABCD-A1B1C1D1中,E为棱C1D1上的动点,F为棱BC的中点.
(1)求证:直线AE⊥DA1
(2)求三棱锥D-AEF的体积;
(3)在线段AA1求一点G,使得直线AE⊥平面DFG.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3x+1,则过点(1,-1)的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆的方程式x2+y2=36,记过点P(1,2)的最长弦和最短弦分别为AB、CD,则直线AB、CD的斜率之和等于(  )
A、-1
B、
3
2
C、1
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

点M在圆心为C1的方程x2+y2+6x-2y+1=0上,点N在圆心为C2的方程x2+y2+2x+4y+1=0上,求|MN|的最大值.

查看答案和解析>>

同步练习册答案