精英家教网 > 高中数学 > 题目详情

 已知椭圆的离心率 e=-, 则m的值为

A.3            B.或3            C.          D.

 

【答案】

 B

分析:椭圆的离心率e=,题中不能确定中哪个是a,哪个是b,故应将比,分类讨论。

解:据题意m>0且m≠5

⑴当m>5时,a2=m, b2=5,∴c2=a2-b2=m-5,∴c2/a2=(m-5)/m, 又e=

∴m=

⑵当<m<5时,a2=5, b2=m, ∴c2=5-m,  ∴(5-m)/5=2/5  ∴m=3

由⑴⑵知 m=25/3或m=3  故选B

在运用分类讨论思想解决含参数字母的问题时,要克服动辄加以分类讨论的思维定势,应充分挖掘问题的特征,多角度审视参数,变更或变换命题,简化分类讨论,甚至避免分类讨论。

 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的离心率e=
2
2
,一条准线方程为x=4,P为准线上一动点,以原点为圆心,椭圆的焦距|F1F2|为直径作圆O,直线PF1,PF2与圆O的另一个交点分别为M,N.
(1)求椭圆的标准方程;
(2)探究直线MN是否经过一定点,若存在,求出该点坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的

直线与椭圆相交M、N两点,且|MN|=1.

(Ⅰ) 求椭圆的方程;

(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足

)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的

直线与椭圆相交M、N两点,且|MN|=1.

(Ⅰ) 求椭圆的方程;

(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足

)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.

查看答案和解析>>

科目:高中数学 来源:0107 期中题 题型:解答题

已知椭圆的离心率e=,过点A(0,-b)和B(a,0)的直线与原点的距离为,求椭圆的标准方程。

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆一中高二(上)期末数学试卷(理科)(解析版) 题型:解答题

已知椭圆的离心率e满足成等比数列,且椭圆上的点到焦点的最短距离为.过点(2,0)作直线l交椭圆于点A,B.
(1)若AB的中点C在y=4x(x≠0)上,求直线l的方程;
(2)设椭圆中心为,问是否存在直线l,使得的面积满足2S△AOB=|OA|•|OB|?若存在,求出直线AB的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案