£¨2013•Õ¢±±Çø¶þÄ££©ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏßC1Ϊµ½¶¨µãF(
3
2
£¬
1
2
)
µÄ¾àÀëÓëµ½¶¨Ö±Ïßl1£º
3
x+y+2=0
µÄ¾àÀëÏàµÈµÄ¶¯µãPµÄ¹ì¼££¬ÇúÏßC2ÊÇÓÉÇúÏßC1ÈÆ×ø±êÔ­µãO°´Ë³Ê±Õë·½ÏòÐýת30¡ãÐγɵģ®
£¨1£©ÇóÇúÏßC1Óë×ø±êÖáµÄ½»µã×ø±ê£¬ÒÔ¼°ÇúÏßC2µÄ·½³Ì£»
£¨2£©¹ý¶¨µãM0£¨m£¬0£©£¨m£¾2£©µÄÖ±Ïßl2½»ÇúÏßC2ÓÚA¡¢BÁ½µã£¬ÒÑÖªÇúÏßC2ÉÏ´æÔÚ²»Í¬µÄÁ½µãC¡¢D¹ØÓÚÖ±Ïßl2¶Ô³Æ£®ÎÊ£ºÏÒ³¤|CD|ÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬ÇóÆä×î´óÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽºÍÅ×ÎïÏߵĶ¨Òå¿ÉÖªÇúÏßC1ΪÅ×ÎïÏߣ¬ÓÉÅ×ÎïÏßC1µÄ¶Ô³ÆÖá¡¢½¹µã¡¢×¼Ïß¿ÉÖª£ºC2ÊÇÒÔ£¨1£¬0£©Îª½¹µã£¬ÒÔx=-1Ϊ׼ÏßµÄÅ×ÎïÏߣ¬µÃ³ö¼´¿É£»
£¨2£©ÓÉÓÚÇúÏßC2ÉÏ´æÔÚ²»Í¬µÄÁ½µãC¡¢D¹ØÓÚÖ±Ïßl2¶Ô³Æ£¬Éè³öÖ±Ïßl2µÄбÂʿɵÃÖ±ÏßCDµÄ·½³Ì£¬ÓëÅ×ÎïÏß·½³ÌÁªÁ¢£¬ÁªÁ¢¸ùÓëϵÊýµÄ¹Øϵ¼´¿ÉµÃ³öÏÒ³¤|CD|£¬Í¨¹ý»»ÔªÀûÓöþ´Îº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®
½â´ð£º½â£º£¨1£©ÉèP£¨x£¬y£©£¬ÓÉÌâÒ⣬¿ÉÖªÇúÏßC1ΪÅ×ÎïÏߣ¬²¢ÇÒÓÐ
(x-
3
2
)
2
+(y-
1
2
)
2
=
1
2
|
3
x+y+2|
£¬
»¯¼ò£¬µÃÅ×ÎïÏßC1µÄ·½³ÌΪ£ºx2+3y2-2
3
xy-8
3
x-8y=0
£®
Áîx=0£¬µÃy=0»òy=
8
3
£¬
Áîy=0£¬µÃx=0»òx=8
3
£¬
¡àÇúÏßC1Óë×ø±êÖáµÄ½»µã×ø±êΪ£¨0£¬0£©ºÍ(0£¬
8
3
)
£¬(8
3
£¬0)
£®
ÓÉÌâÒâ¿ÉÖª£¬ÇúÏßC1ΪÅ×ÎïÏߣ¬¹ý½¹µãÓë×¼Ïß´¹Ö±µÄÖ±ÏßΪy-
1
2
=
1
3
(x-
3
2
)
£¬»¯Îªy=
3
3
x
£®
¿ÉÖª´Ë¶Ô³ÆÖá¹ýÔ­µã£¬Çãб½ÇΪ30¡ã£®
ÓÖ½¹µãF(
3
2
£¬
1
2
)
µ½l1£ºy=-
3
x-2
µÄ¾àÀëΪ|
3
¡Á
3
2
+
1
2
+2
(
3
)
2
+12
|=2
£®
¡àC2ÊÇÒÔ£¨1£¬0£©Îª½¹µã£¬ÒÔx=-1Ϊ׼ÏßµÄÅ×ÎïÏߣ¬Æä·½³ÌΪ£ºy2=4x£®
£¨2£©ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬
ÓÉÌâÒâÖªÖ±Ïßl2µÄбÂÊk´æÔÚÇÒ²»ÎªÁ㣬ÉèÖ±Ïßl2µÄ·½³ÌΪy=k£¨x-m£©£¬ÔòÖ±ÏßCDµÄ·½³ÌΪy=-
1
k
x+b
£¬
Ôò
y=-
1
k
x+b
y2=4x.
µÃy2+4ky-4kb=0£¬
¡à¡÷=16k£¨k+b£©£¾0¢Ù
¡ày1+y2=-4k£¬y1•y2=-4kb£¬
ÉèÏÒCDµÄÖеãΪG£¨x3£¬y3£©£¬Ôòy3=-2k£¬x3=k£¨b+2k£©£®
¡ßG£¨x3£¬y3£©ÔÚÖ±Ïßl2ÉÏ£¬-2k=k£¨bk+2k2-m£©£¬¼´b=
m-2-2k2
k
¢Ú
½«¢Ú´úÈë¢Ù£¬µÃ0£¼k2£¼m-2£¬
|CD|=
1+(-k)2
•|y1-y2|
=
1+k2
(y1+y2)2-4y1y2
=4
-(k2-
m-3
2
)
2
+(
m-1
2
)
2

Éèt=k2£¬Ôò0£¼t£¼m-2£®
¹¹Ô캯Êýf(t)=4
-(t-
m-3
2
)
2
+(
m-1
2
)
2
£¬0£¼t£¼m-2£®
ÓÉÒÑÖªm£¾2£¬µ±
m-2£¾0
m-3£¼0
£¬¼´2£¼m¡Ü3ʱ£¬f£¨t£©ÎÞ×î´óÖµ£¬ËùÒÔÏÒ³¤|CD|²»´æÔÚ×î´óÖµ£®
µ±m£¾3ʱ£¬f£¨t£©ÓÐ×î´óÖµ2£¨m-1£©£¬¼´ÏÒ³¤|CD|ÓÐ×î´óÖµ2£¨m-1£©£®
µãÆÀ£ºÊìÁ·ÕÆÎÕÅ×ÎïÏߵĶ¨Òå¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÅ×ÎïÏßÏཻÎÊÌâת»¯ÎªÒ»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹Øϵ¡¢ÏÒ³¤¹«Ê½¡¢»»Ôª·¨¡¢¶þ´Îº¯ÊýµÄµ¥µ÷ÐÔ¡¢·ÖÀàÌÖÂÛµÄ˼Ïë·½·¨ÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Õ¢±±Çø¶þÄ££©ÉèΪÐéÊýµ¥Î»£¬¼¯ºÏA={1£¬-1£¬i£¬-i}£¬¼¯ºÏB={i10£¬1-i4£¬(1+i)(1-i)£¬
1+i1-i
}
£¬ÔòA¡ÉB=
{-1£¬i}
{-1£¬i}
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Õ¢±±Çø¶þÄ££©ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔÏòÁ¿
a
=£¨a1£¬a2£©£¬
b
=£¨b1£¬b2£©ÎªÁڱߵÄƽÐÐËıßÐεÄÃæ»ýΪ
|a1b2-b1a2|
|a1b2-b1a2|
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Õ¢±±Çø¶þÄ££©£¨1+2x£©3£¨1-x£©4Õ¹¿ªÊ½ÖÐx6µÄϵÊýΪ
-20
-20
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Õ¢±±Çø¶þÄ££©¹ýÔ­µãÇÒÓëÏòÁ¿
n
=(cos(-
¦Ð
6
)£¬sin(-
¦Ð
6
))
´¹Ö±µÄÖ±Ïß±»Ô²x2+y2-4y=0Ëù½ØµÃµÄÏÒ³¤Îª
2
3
2
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Õ¢±±Çø¶þÄ££©Éè0£¼¦È£¼
¦Ð
2
£¬a1=2cos¦È£¬an+1=
2+an
£¬ÔòÊýÁÐ{an}µÄͨÏʽan=
2cos
¦È
2n-1
2cos
¦È
2n-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸