精英家教网 > 高中数学 > 题目详情

(本小题12分)如图,四棱锥中,

侧面是边长为2的正三角形,且与底面垂直,底面的菱形,的中点.

(1)与底面所成角的大小;

(2)求证:平面

(3)求二面角的余弦值.

 

【答案】

(1)DC的中点O,由ΔPDC是正三角形,有PODC

又∵平面PDC⊥底面ABCD,∴PO⊥平面ABCDO

连结OA,则OAPA在底面上的射影.∴∠PAO就是PA与底面所成角.

∵∠ADC=60°,由已知ΔPCD和ΔACD是全等的正三角形,从而求得OA=OP=

∴∠PAO=45°.∴PA与底面ABCD可成角的大小为45°.             

(2)由底面ABCD为菱形且∠ADC=60°,DC=2,DO=1,有OADC

建立空间直角坐标系如图,则,

MPB中点,∴

PADMPADC.   ∴PA⊥平面DMC.                          

(3).令平面BMC的法向量

,从而x+z=0;  ……①,  ,从而. ……②

由①、②,取x=−1,则.   ∴可取

由(2)知平面CDM的法向量可取

. ∴所求二面角的余弦值为-

法二:(1)方法同上                              

(2)取的中点,连接,由(Ⅰ)知,在菱形中,由于,则,又,则,即

又在中,中位线,则,则四边形,所以,在中,,则,故

(3)由(2)知,则为二面角的平面角,在中,易得

故,所求二面角的余弦值为

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年湖南省常德市高三质量检测考试数学理卷 题型:解答题

     (本小题12分)

如图3,已知在侧棱垂直于底面

的三棱柱中,AC=BC, AC⊥BC,点D是A1B1中点.

(1)求证:平面AC1D⊥平面A1ABB1;

(2)若AC1与平面A1ABB1所成角的正弦值

,求二面角D- AC1-A1的余弦值.

 

 

查看答案和解析>>

科目:高中数学 来源:2014届海南省高一上学期教学质量监测三数学 题型:解答题

(本小题12分)如图,四棱锥中,底面是正方形,, 底面,    分别在上,且

(1)求证:平面∥平面

(2)求直线与平面面所成角的正弦值.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年海南省高二下学期质量检测数学文卷(一) 题型:解答题

(本小题12分)

如图:⊙O为△ABC的外接圆,AB=AC,过点A的直线交⊙O于D,交BC延长线于F,DE是BD的延长线,连接CD。

①  求证:∠EDF=∠CDF;   

②求证:AB2=AF·AD。

 

 

查看答案和解析>>

科目:高中数学 来源:2009-2010集宁一中学高三年级理科数学第一学期期末考试试题 题型:解答题

(本小题12分)如图,四面体ABCD中,O、E分别是BD、BC的中点,

    (I)求证:平面BCD;

    (II)求异面直线AB与CD所成角的大小;

    (III)求点E到平面ACD的距离。

 

查看答案和解析>>

同步练习册答案